File size: 6,299 Bytes
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7a5f93
86f09db
 
 
e7a5f93
 
0902a5f
 
 
 
 
 
 
 
 
 
 
86f09db
0902a5f
 
 
 
 
 
 
 
 
11935ed
 
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11935ed
 
 
0902a5f
 
 
 
 
 
 
 
 
 
 
bd89e06
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from cldm.ddim_hacked import DDIMSampler
import torch
from annotator.render_images import render_text_image_custom
from pytorch_lightning import seed_everything
save_memory = False
from cldm.hack import disable_verbosity
disable_verbosity()
import random
import einops
import numpy as np
from ldm.util import instantiate_from_config
from cldm.model import load_state_dict
from torchvision.transforms import ToTensor
from contextlib import nullcontext

def load_model_from_config(cfg, ckpt, verbose=False, not_use_ckpt=False):

    # if "model_ema.input_blocks10in_layers0weight" not in sd:
    #     print("missing model_ema.input_blocks10in_layers0weight. set use_ema as False")
    #     cfg.model.params.use_ema = False 
    model = instantiate_from_config(cfg.model)

    if ckpt.endswith("model_states.pt"):
        sd = torch.load(ckpt, map_location='cpu')["module"]
    else:
        sd = load_state_dict(ckpt, location='cpu')
   
    keys_ = list(sd.keys())[:]
    for k in keys_:
        if k.startswith("module."):
            nk = k[7:]
            sd[nk] = sd[k]
            del sd[k]

    if not not_use_ckpt:
        m, u = model.load_state_dict(sd, strict=False)
        if len(m) > 0 and verbose:
            print("missing keys: {}".format(len(m)))
            print(m)
        if len(u) > 0 and verbose:
            print("unexpected keys: {}".format(len(u)))
            print(u)

    if torch.cuda.is_available():
        model.cuda() 
    model.eval()
    return model

class Render_Text:
    def __init__(self, 
        model,
        precision_scope=nullcontext,
        transform=ToTensor()
        ):
        self.model = model
        self.precision_scope = precision_scope
        self.transform = transform
        self.ddim_sampler = DDIMSampler(model)
    
    def process_multi(self, 
            rendered_txt_values, shared_prompt,  
            width_values, ratio_values,  
            top_left_x_values, top_left_y_values, 
            yaw_values, num_rows_values,
            shared_num_samples, shared_image_resolution, 
            shared_ddim_steps, shared_guess_mode, 
            shared_strength, shared_scale, shared_seed, 
            shared_eta, shared_a_prompt, shared_n_prompt,
            only_show_rendered_image=False
            ):
        with torch.no_grad(), \
            self.precision_scope("cuda"), \
            self.model.ema_scope("Sampling on Benchmark Prompts"):
            print("rendered txt:", str(rendered_txt_values), "[t]")
            if rendered_txt_values == "":
                control = None
            else:
                def format_bboxes(width_values, ratio_values, top_left_x_values, top_left_y_values, yaw_values):
                    bboxes = []
                    for width, ratio, top_left_x, top_left_y, yaw in zip(width_values, ratio_values, top_left_x_values, top_left_y_values, yaw_values):
                        bbox = {
                            "width": width,
                            "ratio": ratio,
                            # "height": height,
                            "top_left_x": top_left_x,
                            "top_left_y": top_left_y,
                            "yaw": yaw
                            }
                        bboxes.append(bbox)
                    return bboxes
                
                whiteboard_img = render_text_image_custom(
                    (shared_image_resolution, shared_image_resolution),
                    format_bboxes(width_values, ratio_values, top_left_x_values, top_left_y_values, yaw_values),
                    rendered_txt_values,
                    num_rows_values
                    )
                whiteboard_img = whiteboard_img.convert("RGB")
                
                if only_show_rendered_image:
                    return [whiteboard_img]
                
                control = self.transform(whiteboard_img.copy())
                if torch.cuda.is_available():
                    control = control.cuda()
                control = torch.stack([control for _ in range(shared_num_samples)], dim=0)
                control = control.clone()
                control = [control]
                
            H, W = shared_image_resolution, shared_image_resolution

            if shared_seed == -1:
                shared_seed = random.randint(0, 65535)
            seed_everything(shared_seed)

            print("control is None: {}".format(control is None))
            print("prompt for the SD branch:", str(shared_prompt), "[t]")
            cond_c_cross = self.model.get_learned_conditioning([shared_prompt + ', ' + shared_a_prompt] * shared_num_samples)
            un_cond_cross = self.model.get_learned_conditioning([shared_n_prompt] * shared_num_samples)
            
            cond = {"c_concat": control, "c_crossattn": [cond_c_cross] if not isinstance(cond_c_cross, list) else cond_c_cross}
            un_cond = {"c_concat": None if shared_guess_mode else control, "c_crossattn": [un_cond_cross] if not isinstance(un_cond_cross, list) else un_cond_cross}
            shape = (4, H // 8, W // 8)

            if not self.model.learnable_conscale:
                self.model.control_scales = [shared_strength * (0.825 ** float(12 - i)) for i in range(13)] if shared_guess_mode else ([shared_strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
            else:
                print("learned control scale: {}".format(str(self.model.control_scales)))
            samples, intermediates = self.ddim_sampler.sample(shared_ddim_steps, shared_num_samples,
                                                        shape, cond, verbose=False, eta=shared_eta,
                                                        unconditional_guidance_scale=shared_scale,
                                                        unconditional_conditioning=un_cond)

            x_samples = self.model.decode_first_stage(samples)
            x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

            results = [x_samples[i] for i in range(shared_num_samples)]
        if rendered_txt_values != "":
            return [whiteboard_img] + results
        else:
            return results