File size: 13,125 Bytes
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

from cldm.model import load_state_dict
from cldm.ddim_hacked import DDIMSampler
from ldm.util import instantiate_from_config
import os
from omegaconf import OmegaConf
import argparse, os
from torchvision.transforms import ToTensor
from torch import autocast
from contextlib import nullcontext
from scripts.rendertext_tool import Render_Text, load_model_from_config
# def load_model_from_config(cfg, ckpt, verbose=False, not_use_ckpt=False):
#     sd = load_state_dict(ckpt, location='cpu')

#     if "model_ema.input_blocks10in_layers0weight" not in sd:
#         cfg.model.params.use_ema = False 
#     model = instantiate_from_config(cfg.model)

#     if not not_use_ckpt:
#         m, u = model.load_state_dict(sd, strict=False)
#         if len(m) > 0 and verbose:
#             print("missing keys: {}".format(len(m)))
#             print(m)
#         if len(u) > 0 and verbose:
#             print("unexpected keys: {}".format(len(u)))
#             print(u)

#     model.cuda()
#     model.eval()
#     return model




def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--cfg",
        type=str,
        default="configs/stable-diffusion/textcaps_cldm_v20.yaml",
        help="path to config which constructs model",
    )
    parser.add_argument(
        "--ckpt",
        type=str,
        help="path to checkpoint of model",
    )
    parser.add_argument(
        "--hint_range_m11",
        action="store_true",
        help="the range of the hint image ([-1, 1])",
    )
    parser.add_argument(
        "--precision",
        type=str,
        help="evaluate at this precision",
        choices=["full", "autocast"],
        default="full" #"autocast"
    )
    parser.add_argument(
        "--not_use_ckpt",
        action="store_true",
        help="not to use the ckpt",
    )
    parser.add_argument(
        "--build_demo",
        action="store_true",
        help="whether to build the demo",
    )
    parser.add_argument(
        "--sep_prompt",
        action="store_true",
        help="whether to sep the prompt",
    )
    parser.add_argument(
        "--spell_prompt_type",
        type=int,
        default=1,
        help="1: A sign with the word 'xxx' written on it; 2: A sign that says 'xxx'",
    )
    parser.add_argument(
        "--max_num_prompts",
        type=int,
        default=None,
        help="max num of the used prompts",
    )
    parser.add_argument(
        "--grams",
        type=int,
        default=1,
        help="How many grams (words or symbols) to form the to-be-rendered text (used for DrawSpelling Benchmark)",
    )
    parser.add_argument(
        "--num_samples",
        type=int,
        default=1,
        help="how many samples to produce for each given prompt. A.k.a batch size",
    )
    parser.add_argument(
        "--from-file",
        type=str,
        help="if specified, load prompts from this file, separated by newlines",
    )
    parser.add_argument(
        "--prompt",
        type=str,
        nargs="?",
        default="a sign that says 'Stable Diffusion'",
        help="the prompt"
    )
    parser.add_argument(
        "--rendered_txt",
        type=str,
        nargs="?",
        default="Stable Diffusion",
        help="the text to render"
    )
    parser.add_argument(
        "--uncond_glycon_img",
        action="store_true",
        help="whether to set glyph embedding as None while using unconditional conditioning",
    )
    parser.add_argument(
        "--deepspeed_ckpt",
        action="store_true",
        help="whether to use deepspeed while training",
    )
    parser.add_argument(
        "--glyph_img_size",
        type=int,
        default=256,
        help="the size of input images of the glyph image encoder",
    )
    parser.add_argument(
        "--uncond_glyph_image_type",
        type=str,
        default="white",
        help="the type of rendered glyph images as unconditional conditions while using classifier-free guidance"
    )
    parser.add_argument(
        "--remove_txt_in_prompt",
        action="store_true",
        help="whether to remove text in the prompt",
    )
    parser.add_argument(
        "--replace_token",
        type=str,
        default="",
        help="the token used to replace"
    )
    return parser

if not os.path.basename(os.getcwd()) == "stablediffusion":
    os.chdir(os.path.join(os.getcwd(), "stablediffusion"))
    print(os.getcwd()) 
parser = parse_args()
opt = parser.parse_args()

if opt.deepspeed_ckpt:
    assert os.path.isdir(opt.ckpt)
    opt.ckpt = os.path.join(opt.ckpt, "checkpoint", "mp_rank_00_model_states.pt")
    assert os.path.exists(opt.ckpt)

cfg = OmegaConf.load(f"{opt.cfg}")
model = load_model_from_config(cfg, f"{opt.ckpt}", verbose=True, not_use_ckpt=opt.not_use_ckpt)
hint_range_m11 = opt.hint_range_m11
sep_prompt = opt.sep_prompt

ddim_sampler = DDIMSampler(model)
precision_scope = autocast if opt.precision == "autocast" else nullcontext
trans = ToTensor()
render_tool = Render_Text(
        model, precision_scope,
        trans,
        hint_range_m11,
        sep_prompt,
        uncond_glycon_img= cfg.uncond_glycon_img if hasattr(cfg, "uncond_glycon_img") else opt.uncond_glycon_img,
        glyph_control_proc_config= cfg.glyph_control_proc_config if hasattr(cfg, "glyph_control_proc_config") else None,
        glyph_img_size = opt.glyph_img_size,
        uncond_glyph_image_type = cfg.uncond_glyph_image_type if hasattr(cfg, "uncond_glyph_image_type") else opt.uncond_glyph_image_type,
        remove_txt_in_prompt = cfg.remove_txt_in_prompt if hasattr(cfg, "remove_txt_in_prompt") else opt.remove_txt_in_prompt,
        replace_token = cfg.replace_token if hasattr(cfg, "replace_token") else opt.replace_token,
        )


if opt.build_demo:
    import gradio as gr
    block = gr.Blocks().queue()
    with block:
        with gr.Row():
            gr.Markdown("## Control Stable Diffusion with Glyph Images")
        with gr.Row():
            with gr.Column():
                # input_image = gr.Image(source='upload', type="numpy")
                rendered_txt = gr.Textbox(label="rendered_txt")
                prompt = gr.Textbox(label="Prompt")
                if sep_prompt:
                    prompt_2 = gr.Textbox(label="Prompt_ControlNet")
                else:
                    prompt_2 = gr.Number(value = 0, visible = False) #None #""
                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    width = gr.Slider(label="bbox_width", minimum=0., maximum=1, value=0.3, step=0.01)
                    # height = gr.Slider(label="bbox_height", minimum=0., maximum=1, value=0.2, step=0.01)
                    ratio = gr.Slider(label="bbox_width_height_ratio", minimum=0., maximum=5, value=0., step=0.02)
                    top_left_x = gr.Slider(label="bbox_top_left_x", minimum=0., maximum=1, value=0.5, step=0.01)
                    top_left_y = gr.Slider(label="bbox_top_left_y", minimum=0., maximum=1, value=0.5, step=0.01)
                    yaw = gr.Slider(label="bbox_yaw", minimum=-180, maximum=180, value=0, step=5)
                    num_rows =  gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1)
                    num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                    image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
                    strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                    guess_mode = gr.Checkbox(label='Guess Mode', value=False)
                    # low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
                    # high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
                    ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                    scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                    seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
                    eta = gr.Number(label="eta (DDIM)", value=0.0)
                    a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
                    n_prompt = gr.Textbox(label="Negative Prompt",
                                        value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
            with gr.Column():
                result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
        ips = [
            rendered_txt, prompt, 
            width, ratio, # height, 
            top_left_x, top_left_y, yaw, num_rows,
            a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta, 
            prompt_2
            ]
        run_button.click(fn=render_tool.process, inputs=ips, outputs=[result_gallery])
        # run_button.click(fn=process, inputs=ips, outputs=[result_gallery])


    block.launch(server_name='0.0.0.0', share=True)
else:
    import easyocr
    reader = easyocr.Reader(['en'])
    # num_samples = 1
    # rendered_txt = "happy"
    # prompt = "A sign that says 'happy'"

    num_samples = opt.num_samples
    print("the num of samples is {}".format(num_samples))
    if not opt.from_file:
        prompts = [opt.prompt]
        data = [opt.rendered_txt]
        print("the prompt is {}".format(prompts))
        print("the rendered_txt is {}".format(data))
        assert prompts is not None
    else:
        print(f"reading prompts from {opt.from_file}")
        with open(opt.from_file, "r") as f:
            data = f.read().splitlines()
            if "gram" in os.path.basename(opt.from_file):
                data = [item.split("\t")[0] for item in data]
            if opt.grams > 1:
                data = [" ".join(data[i:i + opt.grams]) for i in range(0, len(data), opt.grams)]
            if "DrawText_Spelling" in os.path.basename(opt.from_file) or "gram" in os.path.basename(opt.from_file):
                if opt.spell_prompt_type == 1:
                    prompts = ['A sign with the word "{}" written on it'.format(line.strip()) for line in data]
                elif opt.spell_prompt_type == 2:
                    prompts = ["A sign that says '{}'".format(line.strip()) for line in data]
                elif opt.spell_prompt_type == 20:
                    prompts = ['A sign that says "{}"'.format(line.strip()) for line in data]
                elif opt.spell_prompt_type == 3:
                    prompts = ["A whiteboard that says '{}'".format(line.strip()) for line in data]
                elif opt.spell_prompt_type == 30:
                    prompts = ['A whiteboard that says "{}"'.format(line.strip()) for line in data]
                else:
                    print("Only five types of prompt templates are supported currently")
                    raise ValueError
                # if opt.verbose_all_prompts:
                #     show_num = opt.max_num_prompts if (opt.max_num_prompts is not None and opt.max_num_prompts >0) else 10
                #     for i in range(show_num):
                #         print("embed the word into the prompt template for {} Benchmark: {}".format(
                #             os.path.basename(opt.from_file), data[i])
                #         )
                # else:  
                #     print("embed the word into the prompt template for {} Benchmark: e.g., {}".format(
                #         os.path.basename(opt.from_file), data[0])
                #         )
            if opt.max_num_prompts is not None and opt.max_num_prompts >0:
                print("only use {} prompts to test the model".format(opt.max_num_prompts))
                data = data[:opt.max_num_prompts]
                prompts = prompts[:opt.max_num_prompts]

    width, ratio, top_left_x, top_left_y, yaw, num_rows = 0.3, 0, 0.5, 0.5, 0, 1
    image_resolution = 512
    strength = 1
    guess_mode = False
    ddim_steps = 20
    scale = 9.0
    seed = 1945923867
    eta = 0
    a_prompt = 'best quality, extremely detailed'
    n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
   
    all_results_list = []
    for i in range(len(data)):
        ips = (
        data[i], prompts[i], 
        width, ratio, top_left_x, top_left_y, yaw, num_rows,
        a_prompt, n_prompt, 
        num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta
        )
        all_results = render_tool.process(*ips) #process(*ips)
        all_results_list.extend(all_results[1:] if data[i] != "" else all_results)
    all_ocr_info = []
    for image_array in all_results_list:
        ocr_result = reader.readtext(image_array)
        all_ocr_info.append(ocr_result)