Spaces:
Sleeping
Sleeping
File size: 13,125 Bytes
0902a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
from cldm.model import load_state_dict
from cldm.ddim_hacked import DDIMSampler
from ldm.util import instantiate_from_config
import os
from omegaconf import OmegaConf
import argparse, os
from torchvision.transforms import ToTensor
from torch import autocast
from contextlib import nullcontext
from scripts.rendertext_tool import Render_Text, load_model_from_config
# def load_model_from_config(cfg, ckpt, verbose=False, not_use_ckpt=False):
# sd = load_state_dict(ckpt, location='cpu')
# if "model_ema.input_blocks10in_layers0weight" not in sd:
# cfg.model.params.use_ema = False
# model = instantiate_from_config(cfg.model)
# if not not_use_ckpt:
# m, u = model.load_state_dict(sd, strict=False)
# if len(m) > 0 and verbose:
# print("missing keys: {}".format(len(m)))
# print(m)
# if len(u) > 0 and verbose:
# print("unexpected keys: {}".format(len(u)))
# print(u)
# model.cuda()
# model.eval()
# return model
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--cfg",
type=str,
default="configs/stable-diffusion/textcaps_cldm_v20.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
help="path to checkpoint of model",
)
parser.add_argument(
"--hint_range_m11",
action="store_true",
help="the range of the hint image ([-1, 1])",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="full" #"autocast"
)
parser.add_argument(
"--not_use_ckpt",
action="store_true",
help="not to use the ckpt",
)
parser.add_argument(
"--build_demo",
action="store_true",
help="whether to build the demo",
)
parser.add_argument(
"--sep_prompt",
action="store_true",
help="whether to sep the prompt",
)
parser.add_argument(
"--spell_prompt_type",
type=int,
default=1,
help="1: A sign with the word 'xxx' written on it; 2: A sign that says 'xxx'",
)
parser.add_argument(
"--max_num_prompts",
type=int,
default=None,
help="max num of the used prompts",
)
parser.add_argument(
"--grams",
type=int,
default=1,
help="How many grams (words or symbols) to form the to-be-rendered text (used for DrawSpelling Benchmark)",
)
parser.add_argument(
"--num_samples",
type=int,
default=1,
help="how many samples to produce for each given prompt. A.k.a batch size",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file, separated by newlines",
)
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a sign that says 'Stable Diffusion'",
help="the prompt"
)
parser.add_argument(
"--rendered_txt",
type=str,
nargs="?",
default="Stable Diffusion",
help="the text to render"
)
parser.add_argument(
"--uncond_glycon_img",
action="store_true",
help="whether to set glyph embedding as None while using unconditional conditioning",
)
parser.add_argument(
"--deepspeed_ckpt",
action="store_true",
help="whether to use deepspeed while training",
)
parser.add_argument(
"--glyph_img_size",
type=int,
default=256,
help="the size of input images of the glyph image encoder",
)
parser.add_argument(
"--uncond_glyph_image_type",
type=str,
default="white",
help="the type of rendered glyph images as unconditional conditions while using classifier-free guidance"
)
parser.add_argument(
"--remove_txt_in_prompt",
action="store_true",
help="whether to remove text in the prompt",
)
parser.add_argument(
"--replace_token",
type=str,
default="",
help="the token used to replace"
)
return parser
if not os.path.basename(os.getcwd()) == "stablediffusion":
os.chdir(os.path.join(os.getcwd(), "stablediffusion"))
print(os.getcwd())
parser = parse_args()
opt = parser.parse_args()
if opt.deepspeed_ckpt:
assert os.path.isdir(opt.ckpt)
opt.ckpt = os.path.join(opt.ckpt, "checkpoint", "mp_rank_00_model_states.pt")
assert os.path.exists(opt.ckpt)
cfg = OmegaConf.load(f"{opt.cfg}")
model = load_model_from_config(cfg, f"{opt.ckpt}", verbose=True, not_use_ckpt=opt.not_use_ckpt)
hint_range_m11 = opt.hint_range_m11
sep_prompt = opt.sep_prompt
ddim_sampler = DDIMSampler(model)
precision_scope = autocast if opt.precision == "autocast" else nullcontext
trans = ToTensor()
render_tool = Render_Text(
model, precision_scope,
trans,
hint_range_m11,
sep_prompt,
uncond_glycon_img= cfg.uncond_glycon_img if hasattr(cfg, "uncond_glycon_img") else opt.uncond_glycon_img,
glyph_control_proc_config= cfg.glyph_control_proc_config if hasattr(cfg, "glyph_control_proc_config") else None,
glyph_img_size = opt.glyph_img_size,
uncond_glyph_image_type = cfg.uncond_glyph_image_type if hasattr(cfg, "uncond_glyph_image_type") else opt.uncond_glyph_image_type,
remove_txt_in_prompt = cfg.remove_txt_in_prompt if hasattr(cfg, "remove_txt_in_prompt") else opt.remove_txt_in_prompt,
replace_token = cfg.replace_token if hasattr(cfg, "replace_token") else opt.replace_token,
)
if opt.build_demo:
import gradio as gr
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Control Stable Diffusion with Glyph Images")
with gr.Row():
with gr.Column():
# input_image = gr.Image(source='upload', type="numpy")
rendered_txt = gr.Textbox(label="rendered_txt")
prompt = gr.Textbox(label="Prompt")
if sep_prompt:
prompt_2 = gr.Textbox(label="Prompt_ControlNet")
else:
prompt_2 = gr.Number(value = 0, visible = False) #None #""
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
width = gr.Slider(label="bbox_width", minimum=0., maximum=1, value=0.3, step=0.01)
# height = gr.Slider(label="bbox_height", minimum=0., maximum=1, value=0.2, step=0.01)
ratio = gr.Slider(label="bbox_width_height_ratio", minimum=0., maximum=5, value=0., step=0.02)
top_left_x = gr.Slider(label="bbox_top_left_x", minimum=0., maximum=1, value=0.5, step=0.01)
top_left_y = gr.Slider(label="bbox_top_left_y", minimum=0., maximum=1, value=0.5, step=0.01)
yaw = gr.Slider(label="bbox_yaw", minimum=-180, maximum=180, value=0, step=5)
num_rows = gr.Slider(label="num_rows", minimum=1, maximum=4, value=1, step=1)
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
# low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
# high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
ips = [
rendered_txt, prompt,
width, ratio, # height,
top_left_x, top_left_y, yaw, num_rows,
a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta,
prompt_2
]
run_button.click(fn=render_tool.process, inputs=ips, outputs=[result_gallery])
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
block.launch(server_name='0.0.0.0', share=True)
else:
import easyocr
reader = easyocr.Reader(['en'])
# num_samples = 1
# rendered_txt = "happy"
# prompt = "A sign that says 'happy'"
num_samples = opt.num_samples
print("the num of samples is {}".format(num_samples))
if not opt.from_file:
prompts = [opt.prompt]
data = [opt.rendered_txt]
print("the prompt is {}".format(prompts))
print("the rendered_txt is {}".format(data))
assert prompts is not None
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
if "gram" in os.path.basename(opt.from_file):
data = [item.split("\t")[0] for item in data]
if opt.grams > 1:
data = [" ".join(data[i:i + opt.grams]) for i in range(0, len(data), opt.grams)]
if "DrawText_Spelling" in os.path.basename(opt.from_file) or "gram" in os.path.basename(opt.from_file):
if opt.spell_prompt_type == 1:
prompts = ['A sign with the word "{}" written on it'.format(line.strip()) for line in data]
elif opt.spell_prompt_type == 2:
prompts = ["A sign that says '{}'".format(line.strip()) for line in data]
elif opt.spell_prompt_type == 20:
prompts = ['A sign that says "{}"'.format(line.strip()) for line in data]
elif opt.spell_prompt_type == 3:
prompts = ["A whiteboard that says '{}'".format(line.strip()) for line in data]
elif opt.spell_prompt_type == 30:
prompts = ['A whiteboard that says "{}"'.format(line.strip()) for line in data]
else:
print("Only five types of prompt templates are supported currently")
raise ValueError
# if opt.verbose_all_prompts:
# show_num = opt.max_num_prompts if (opt.max_num_prompts is not None and opt.max_num_prompts >0) else 10
# for i in range(show_num):
# print("embed the word into the prompt template for {} Benchmark: {}".format(
# os.path.basename(opt.from_file), data[i])
# )
# else:
# print("embed the word into the prompt template for {} Benchmark: e.g., {}".format(
# os.path.basename(opt.from_file), data[0])
# )
if opt.max_num_prompts is not None and opt.max_num_prompts >0:
print("only use {} prompts to test the model".format(opt.max_num_prompts))
data = data[:opt.max_num_prompts]
prompts = prompts[:opt.max_num_prompts]
width, ratio, top_left_x, top_left_y, yaw, num_rows = 0.3, 0, 0.5, 0.5, 0, 1
image_resolution = 512
strength = 1
guess_mode = False
ddim_steps = 20
scale = 9.0
seed = 1945923867
eta = 0
a_prompt = 'best quality, extremely detailed'
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
all_results_list = []
for i in range(len(data)):
ips = (
data[i], prompts[i],
width, ratio, top_left_x, top_left_y, yaw, num_rows,
a_prompt, n_prompt,
num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, seed, eta
)
all_results = render_tool.process(*ips) #process(*ips)
all_results_list.extend(all_results[1:] if data[i] != "" else all_results)
all_ocr_info = []
for image_array in all_results_list:
ocr_result = reader.readtext(image_array)
all_ocr_info.append(ocr_result)
|