Spaces:
Sleeping
Sleeping
import einops | |
import torch | |
import torch as th | |
import torch.nn as nn | |
from ldm.modules.diffusionmodules.util import ( | |
conv_nd, | |
linear, | |
zero_module, | |
timestep_embedding, | |
) | |
from einops import rearrange, repeat | |
from torchvision.utils import make_grid | |
from ldm.modules.attention import SpatialTransformer | |
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock | |
from ldm.models.diffusion.ddpm import LatentDiffusion | |
from ldm.util import log_txt_as_img, exists, instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.modules.ema import LitEma | |
from contextlib import contextmanager, nullcontext | |
from cldm.model import load_state_dict | |
import numpy as np | |
from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, OneCycleLR | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class ControlledUnetModel(UNetModel): | |
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, context_glyph= None, **kwargs): | |
hs = [] | |
with torch.no_grad(): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb, context) | |
hs.append(h) | |
h = self.middle_block(h, emb, context) | |
if control is not None: | |
h += control.pop() | |
for i, module in enumerate(self.output_blocks): | |
if only_mid_control or control is None: | |
h = torch.cat([h, hs.pop()], dim=1) | |
else: | |
h = torch.cat([h, hs.pop() + control.pop()], dim=1) | |
h = module(h, emb, context if context_glyph is None else context_glyph) | |
h = h.type(x.dtype) | |
return self.out(h) | |
class ControlNet(nn.Module): | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
hint_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
): | |
super().__init__() | |
if use_spatial_transformer: | |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
from omegaconf.listconfig import ListConfig | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.dims = dims | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
f"attention will still not be set.") | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.use_checkpoint = use_checkpoint | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) | |
self.input_hint_block = TimestepEmbedSequential( | |
conv_nd(dims, hint_channels, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 32, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 32, 32, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 32, 96, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 96, 96, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 96, 256, 3, padding=1, stride=2), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self.middle_block_out = self.make_zero_conv(ch) | |
self._feature_size += ch | |
def make_zero_conv(self, channels): | |
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) | |
def forward(self, x, hint, timesteps, context, **kwargs): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
guided_hint = self.input_hint_block(hint, emb, context) | |
outs = [] | |
h = x.type(self.dtype) | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
outs.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
outs.append(self.middle_block_out(h, emb, context)) | |
return outs | |
class ControlLDM(LatentDiffusion): | |
def __init__(self, | |
control_stage_config, | |
control_key, only_mid_control, | |
sd_locked = True, concat_textemb = False, | |
trans_textemb=False, trans_textemb_config = None, | |
learnable_conscale = False, guess_mode=False, | |
sep_lr = False, decoder_lr = 1.0**-4, | |
add_glyph_control = False, glyph_control_config = None, glycon_wd = 0.2, glycon_lr = 1.0**-4, glycon_sched = "lambda", | |
glyph_control_key = "centered_hint", sep_cond_txt = False, exchange_cond_txt = False, | |
max_step = None, multiple_optimizers = False, deepspeed = False, trans_glyph_lr = 1.0**-5, | |
*args, **kwargs | |
): #sep_cap_for_2b = False | |
use_ema = kwargs.pop("use_ema", False) | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
reset_ema = kwargs.pop("reset_ema", False) | |
only_model= kwargs.pop("only_model", False) | |
reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False) | |
keep_num_ema_updates = kwargs.pop("keep_num_ema_updates", False) | |
ignore_keys = kwargs.pop("ignore_keys", []) | |
super().__init__(*args, use_ema=False, **kwargs) | |
self.control_model = instantiate_from_config(control_stage_config) | |
self.control_key = control_key | |
self.only_mid_control = only_mid_control | |
self.learnable_conscale = learnable_conscale | |
conscale_init = [1.0] * 13 if not guess_mode else [(0.825 ** float(12 - i)) for i in range(13)] | |
if learnable_conscale: | |
# self.control_scales = nn.Parameter(torch.ones(13), requires_grad=True) | |
self.control_scales = nn.Parameter(torch.Tensor(conscale_init), requires_grad=True) | |
else: # TODO: register the buffer | |
self.control_scales = conscale_init #[1.0] * 13 | |
self.sd_locked = sd_locked | |
self.concat_textemb = concat_textemb | |
# update | |
self.trans_textemb = False | |
if trans_textemb and trans_textemb_config is not None: | |
self.trans_textemb = True | |
self.instantiate_trans_textemb_model(trans_textemb_config) | |
# self.sep_cap_for_2b = sep_cap_for_2b | |
self.sep_lr = sep_lr | |
self.decoder_lr = decoder_lr | |
self.sep_cond_txt = sep_cond_txt | |
self.exchange_cond_txt = exchange_cond_txt | |
# update (4.18) | |
self.multiple_optimizers = multiple_optimizers | |
self.add_glyph_control = False | |
self.glyph_control_key = glyph_control_key | |
self.freeze_glyph_image_encoder = True | |
self.glyph_image_encoder_type = "CLIP" | |
self.max_step = max_step | |
self.trans_glyph_embed = False | |
self.trans_glyph_lr = trans_glyph_lr | |
if deepspeed: | |
try: | |
from deepspeed.ops.adam import FusedAdam, DeepSpeedCPUAdam | |
self.optimizer = DeepSpeedCPUAdam #FusedAdam | |
except: | |
print("could not import FuseAdam from deepspeed") | |
self.optimizer = torch.optim.AdamW | |
else: | |
self.optimizer = torch.optim.AdamW | |
if add_glyph_control and glyph_control_config is not None: | |
self.add_glyph_control = True | |
self.glycon_wd = glycon_wd | |
self.glycon_lr = glycon_lr | |
self.glycon_sched = glycon_sched | |
self.instantiate_glyph_control_model(glyph_control_config) | |
if self.glyph_control_model.trans_glyph_emb_model is not None: | |
self.trans_glyph_embed = True | |
self.use_ema = use_ema | |
if self.use_ema: #TODO: trainable glyph Image encoder | |
# assert self.sd_locked == True | |
self.model_ema = LitEma(self.control_model, init_num_updates= 0) | |
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= 0) | |
print(f"Keeping diffoutblock EMAs of {len(list(self.model_diffoutblock_ema.buffers()))}.") | |
self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= 0) | |
print(f"Keeping diffout EMAs of {len(list(self.model_diffout_ema.buffers()))}.") | |
if not self.freeze_glyph_image_encoder: | |
self.model_glyphcon_ema = LitEma(self.glyph_control_model.image_encoder, init_num_updates=0) | |
print(f"Keeping glyphcon EMAs of {len(list(self.model_glyphcon_ema.buffers()))}.") | |
if self.trans_glyph_embed: | |
self.model_transglyph_ema = LitEma(self.glyph_control_model.trans_glyph_emb_model, init_num_updates=0) | |
print(f"Keeping glyphcon EMAs of {len(list(self.model_transglyph_ema.buffers()))}.") | |
if ckpt_path is not None: | |
ema_num_updates = self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model) | |
self.restarted_from_ckpt = True | |
# if reset_ema: | |
# assert self.use_ema | |
if self.use_ema and reset_ema: | |
print( | |
f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.") | |
self.model_ema = LitEma(self.control_model, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
if not self.freeze_glyph_image_encoder: | |
self.model_glyphcon_ema = LitEma(self.glyph_control_model.image_encoder, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
if self.trans_glyph_embed: | |
self.model_transglyph_ema = LitEma(self.glyph_control_model.trans_glyph_emb_model, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
if reset_num_ema_updates: | |
print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ") | |
assert self.use_ema | |
self.model_ema.reset_num_updates() | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema.reset_num_updates() | |
self.model_diffout_ema.reset_num_updates() | |
if not self.freeze_glyph_image_encoder: | |
self.model_glyphcon_ema.reset_num_updates() | |
if self.trans_glyph_embed: | |
self.model_transglyph_ema.reset_num_updates() | |
# self.freeze_unet() | |
def ema_scope(self, context=None): | |
if self.use_ema: # TODO: fix the bug while adding transemb_model or trainable control scales | |
self.model_ema.store(self.control_model.parameters()) | |
self.model_ema.copy_to(self.control_model) | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema.store(self.model.diffusion_model.output_blocks.parameters()) | |
self.model_diffoutblock_ema.copy_to(self.model.diffusion_model.output_blocks) | |
self.model_diffout_ema.store(self.model.diffusion_model.out.parameters()) | |
self.model_diffout_ema.copy_to(self.model.diffusion_model.out) | |
if not self.freeze_glyph_image_encoder: | |
self.model_glyphcon_ema.store(self.glyph_control_model.image_encoder.parameters()) | |
self.model_glyphcon_ema.copy_to(self.glyph_control_model.image_encoder) | |
if self.trans_glyph_embed: | |
self.model_transglyph_ema.store(self.glyph_control_model.trans_glyph_emb_model.parameters()) | |
self.model_transglyph_ema.copy_to(self.glyph_control_model.trans_glyph_emb_model) | |
if context is not None: | |
print(f"{context}: Switched ControlNet to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.control_model.parameters()) | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema.restore(self.model.diffusion_model.output_blocks.parameters()) | |
self.model_diffout_ema.restore(self.model.diffusion_model.out.parameters()) | |
if not self.freeze_glyph_image_encoder: | |
self.model_glyphcon_ema.restore(self.glyph_control_model.image_encoder.parameters()) | |
if self.trans_glyph_embed: | |
self.model_transglyph_ema.restore(self.glyph_control_model.trans_glyph_emb_model.parameters()) | |
if context is not None: | |
print(f"{context}: Restored training weights of ControlNet") | |
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): | |
if path.endswith("model_states.pt"): | |
sd = torch.load(path, map_location='cpu')["module"] | |
else: | |
# sd = load_state_dict(path, location='cpu') # abandoned | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in list(sd.keys()): | |
sd = sd["state_dict"] | |
keys_ = list(sd.keys())[:] | |
for k in keys_: | |
if k.startswith("module."): | |
nk = k[7:] | |
sd[nk] = sd[k] | |
del sd[k] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
# missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( | |
# sd, strict=False) | |
if not only_model: | |
missing, unexpected = self.load_state_dict(sd, strict=False) | |
elif path.endswith(".bin"): | |
missing, unexpected = self.model.diffusion_model.load_state_dict(sd, strict=False) | |
elif path.endswith(".ckpt"): | |
missing, unexpected = self.model.load_state_dict(sd, strict=False) | |
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
if len(missing) > 0: | |
print(f"Missing Keys:\n {missing}") | |
if len(unexpected) > 0: | |
print(f"\nUnexpected Keys:\n {unexpected}") | |
if "model_ema.num_updates" in sd and "model_ema.num_updates" not in unexpected: | |
return sd["model_ema.num_updates"].item() | |
else: | |
return 0 | |
def instantiate_trans_textemb_model(self, config): | |
model = instantiate_from_config(config) | |
params = [] | |
for i in range(model.emb_num): | |
if model.trans_trainable[i]: | |
params += list(model.trans_list[i].parameters()) | |
else: | |
for param in model.trans_list[i].parameters(): | |
param.requires_grad = False | |
self.trans_textemb_model = model | |
self.trans_textemb_params = params | |
# add | |
def instantiate_glyph_control_model(self, config): | |
model = instantiate_from_config(config) | |
# params = [] | |
self.freeze_glyph_image_encoder = model.freeze_image_encoder #image_encoder.freeze_model | |
self.glyph_control_model = model | |
self.glyph_image_encoder_type = model.image_encoder_type | |
# self.glyph_control_optim = torch.optim.AdamW([ | |
# {"params": gain_or_bias_params, "weight_decay": 0.}, # "lr": self.glycon_lr}, | |
# {"params": rest_params, "weight_decay": self.glycon_wd} #, "lr": self.glycon_lr}, | |
# ], | |
# lr = self.glycon_lr | |
# ) | |
# params += list(model.image_encoder.parameters()) | |
def get_input(self, batch, k, bs=None, *args, **kwargs): | |
x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) | |
control = batch[self.control_key] | |
if bs is not None: | |
control = control[:bs] | |
control = control.to(self.device) | |
control = einops.rearrange(control, 'b h w c -> b c h w') | |
control = control.to(memory_format=torch.contiguous_format).float() | |
if self.add_glyph_control: | |
assert self.glyph_control_key in batch.keys() | |
glyph_control = batch[self.glyph_control_key] | |
if bs is not None: | |
glyph_control = glyph_control[:bs] | |
glycon_samples = [] | |
for glycon_sample in glyph_control: | |
glycon_sample = glycon_sample.to(self.device) | |
glycon_sample = einops.rearrange(glycon_sample, 'b h w c -> b c h w') | |
glycon_sample = glycon_sample.to(memory_format=torch.contiguous_format).float() | |
glycon_samples.append(glycon_sample) | |
# return x, dict(c_crossattn=[c], c_concat=[control]) | |
return x, dict(c_crossattn=[c] if not isinstance(c, list) else c, c_concat=[control], c_glyph=glycon_samples) | |
return x, dict(c_crossattn=[c] if not isinstance(c, list) else c, c_concat=[control]) | |
def apply_model(self, x_noisy, t, cond, *args, **kwargs): | |
assert isinstance(cond, dict) | |
diffusion_model = self.model.diffusion_model | |
#update | |
embdim_list = [] | |
for c in cond["c_crossattn"]: | |
embdim_list.append(c.shape[-1]) | |
embdim_list = np.array(embdim_list) | |
if np.sum(embdim_list != diffusion_model.context_dim): | |
assert self.trans_textemb | |
if self.trans_textemb: | |
assert self.trans_textemb_model | |
cond_txt_list = self.trans_textemb_model(cond["c_crossattn"]) | |
# if len(cond_txt_list) == 2: | |
# print("cond_txt_2 max: {}".format(torch.max(torch.abs(cond_txt_list[1])))) | |
else: | |
cond_txt_list = cond["c_crossattn"] | |
assert len(cond_txt_list) > 0 | |
if self.sep_cond_txt: | |
cond_txt = cond_txt_list[0] | |
cond_txt_2 = None if len(cond_txt_list) == 1 else cond_txt_list[1] | |
else: | |
if len(cond_txt_list) > 1: | |
cond_txt = cond_txt_list[0] # input text embedding of the pretrained SD | |
if not self.concat_textemb: | |
# currently len(cond_txt_list) <= 2 | |
cond_txt_2 = torch.cat(cond_txt_list[1:], 1) # input text embedding of the ControlNet branch | |
else: | |
cond_txt_2 = torch.cat(cond_txt_list, 1) | |
if self.exchange_cond_txt: | |
txt_buffer = cond_txt | |
cond_txt = cond_txt_2 | |
cond_txt_2 = txt_buffer | |
print("len cond_txt_list: {} | cond_txt_1 shape: {} | cond_txt_2 shape: {}".format(len(cond_txt_list), cond_txt.shape, cond_txt_2.shape)) | |
else: | |
cond_txt = torch.cat(cond_txt_list, 1) | |
cond_txt_2 = None | |
context_glyph = None | |
if self.add_glyph_control: | |
assert "c_glyph" in cond.keys() | |
if cond["c_glyph"] is not None: | |
context_glyph = self.glyph_control_model(cond["c_glyph"], text_embed = cond_txt_list[-1] if len(cond_txt_list) == 3 else cond_txt) | |
else: | |
context_glyph = cond_txt_list[-1] if len(cond_txt_list) == 3 else cond_txt | |
# if cond_txt_2 is None: | |
# print("cond_txt_2 is None") | |
if cond['c_concat'] is None: | |
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control, context_glyph = context_glyph) | |
else: | |
control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt if cond_txt_2 is None else cond_txt_2) | |
control = [c * scale for c, scale in zip(control, self.control_scales)] | |
eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control, context_glyph=context_glyph) | |
return eps | |
def get_unconditional_conditioning(self, N): | |
return self.get_learned_conditioning([""] * N) | |
# Maybe not useful: modify the codes to fit the separate input captions | |
# @torch.no_grad() | |
# def get_unconditional_conditioning(self, N): | |
# return self.get_learned_conditioning([""] * N) if not self.sep_cap_for_2b else self.get_learned_conditioning([[""] * N, [""] * N]) | |
# TODO: adapt to new model | |
def log_images(self, batch, N=4, n_row=2, sample=False, ddim_steps=50, ddim_eta=0.0, return_keys=None, | |
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, | |
plot_diffusion_rows=False, unconditional_guidance_scale=9.0, unconditional_guidance_label=None, | |
use_ema_scope=True, | |
**kwargs): | |
use_ddim = ddim_steps is not None | |
log = dict() | |
z, c = self.get_input(batch, self.first_stage_key, bs=N) | |
c_cat, c = c["c_concat"][0][:N], c["c_crossattn"][0][:N] | |
N = min(z.shape[0], N) | |
n_row = min(z.shape[0], n_row) | |
log["reconstruction"] = self.decode_first_stage(z) | |
log["control"] = c_cat * 2.0 - 1.0 | |
log["conditioning"] = log_txt_as_img((512, 512), batch[self.cond_stage_key], size=16) | |
if plot_diffusion_rows: | |
# get diffusion row | |
diffusion_row = list() | |
z_start = z[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(z_start) | |
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) | |
diffusion_row.append(self.decode_first_stage(z_noisy)) | |
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W | |
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') | |
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') | |
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) | |
log["diffusion_row"] = diffusion_grid | |
if sample: | |
# get denoise row | |
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, | |
batch_size=N, ddim=use_ddim, | |
ddim_steps=ddim_steps, eta=ddim_eta) | |
x_samples = self.decode_first_stage(samples) | |
log["samples"] = x_samples | |
if plot_denoise_rows: | |
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) | |
log["denoise_row"] = denoise_grid | |
if unconditional_guidance_scale > 1.0: | |
uc_cross = self.get_unconditional_conditioning(N) | |
uc_cat = c_cat # torch.zeros_like(c_cat) | |
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]} | |
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]}, | |
batch_size=N, ddim=use_ddim, | |
ddim_steps=ddim_steps, eta=ddim_eta, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=uc_full, | |
) | |
x_samples_cfg = self.decode_first_stage(samples_cfg) | |
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg | |
return log | |
# TODO: adapt to new model | |
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs): | |
ddim_sampler = DDIMSampler(self) | |
b, c, h, w = cond["c_concat"][0].shape | |
shape = (self.channels, h // 8, w // 8) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size, shape, cond, verbose=False, **kwargs) | |
return samples, intermediates | |
# add | |
def training_step(self, batch, batch_idx, optimizer_idx=0): | |
loss = super().training_step(batch, batch_idx, optimizer_idx) | |
if self.use_scheduler and not self.sd_locked and self.sep_lr: | |
decoder_lr = self.optimizers().param_groups[1]["lr"] | |
self.log('decoder_lr_abs', decoder_lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
if self.trans_glyph_embed and self.freeze_glyph_image_encoder: | |
trans_glyph_embed_lr = self.optimizers().param_groups[2]["lr"] | |
self.log('trans_glyph_embed_lr_abs', trans_glyph_embed_lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
return loss | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.control_model.parameters()) | |
if self.trans_textemb: | |
params += self.trans_textemb_params #list(self.trans_textemb_model.parameters()) | |
if self.learnable_conscale: | |
params += [self.control_scales] | |
params_wlr = [] | |
decoder_params = None | |
if not self.sd_locked: | |
decoder_params = list(self.model.diffusion_model.output_blocks.parameters()) | |
decoder_params += list(self.model.diffusion_model.out.parameters()) | |
if not self.sep_lr: | |
params.extend(decoder_params) | |
decoder_params = None | |
params_wlr.append({"params": params, "lr": lr}) | |
if decoder_params is not None: | |
params_wlr.append({"params": decoder_params, "lr": self.decoder_lr}) | |
# if not self.sep_lr: | |
# opt = torch.optim.AdamW(params, lr=lr) | |
# else: | |
# opt = torch.optim.AdamW( | |
# [ | |
# {"params": params}, | |
# {"params": decoder_params, "lr": self.decoder_lr} | |
# ], lr=lr | |
# ) | |
if not self.freeze_glyph_image_encoder: | |
if self.glyph_image_encoder_type == "CLIP": | |
# assert self.sep_lr | |
# follow the training codes in the OpenClip repo | |
# https://github.com/mlfoundations/open_clip/blob/main/src/training/main.py#L303 | |
exclude = lambda n, p: p.ndim < 2 or "bn" in n or "ln" in n or "bias" in n or 'logit_scale' in n | |
include = lambda n, p: not exclude(n, p) | |
# named_parameters = list(model.image_encoder.named_parameters()) | |
named_parameters = list(self.glyph_control_model.image_encoder.named_parameters()) | |
gain_or_bias_params = [p for n, p in named_parameters if exclude(n, p) and p.requires_grad] | |
rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad] | |
self.glyph_control_params_wlr = [ | |
{"params": gain_or_bias_params, "weight_decay": 0., "lr": self.glycon_lr}, | |
{"params": rest_params, "weight_decay": self.glycon_wd, "lr": self.glycon_lr}, | |
] | |
if not self.freeze_glyph_image_encoder and not self.multiple_optimizers: | |
params_wlr.extend(self.glyph_control_params_wlr) | |
if self.trans_glyph_embed: | |
trans_glyph_params = list(self.glyph_control_model.trans_glyph_emb_model.parameters()) | |
params_wlr.append({"params": trans_glyph_params, "lr": self.trans_glyph_lr}) | |
# opt = torch.optim.AdamW(params_wlr) | |
opt = self.optimizer(params_wlr) | |
opts = [opt] | |
if not self.freeze_glyph_image_encoder and self.multiple_optimizers: | |
glyph_control_opt = self.optimizer(self.glyph_control_params_wlr) #torch.optim.AdamW(self.glyph_control_params_wlr) | |
opts.append(glyph_control_opt) | |
# updated | |
schedulers = [] | |
if self.use_scheduler: | |
assert 'target' in self.scheduler_config | |
scheduler_func = instantiate_from_config(self.scheduler_config) | |
print("Setting up LambdaLR scheduler...") | |
schedulers = [ | |
{ | |
'scheduler': LambdaLR( | |
opt, | |
lr_lambda= [scheduler_func.schedule] * len(params_wlr) #if not self.sep_lr else [scheduler_func.schedule, scheduler_func.schedule] | |
), | |
'interval': 'step', | |
'frequency': 1 | |
}] | |
if not self.freeze_glyph_image_encoder and self.multiple_optimizers: | |
if self.glycon_sched == "cosine" and self.max_step is not None: | |
glyph_scheduler = CosineAnnealingLR(glyph_control_opt, T_max=self.max_step) #: max_step | |
elif self.glycon_sched == "onecycle" and self.max_step is not None: | |
glyph_scheduler = OneCycleLR( | |
glyph_control_opt, | |
max_lr=self.glycon_lr, | |
total_steps=self.max_step, #: max_step | |
pct_start=0.0001, | |
anneal_strategy="cos" #'linear' | |
) | |
# elif self.glycon_sched == "lambda": | |
else: | |
glyph_scheduler = LambdaLR( | |
glyph_control_opt, | |
lr_lambda = [scheduler_func.schedule] * len(self.glyph_control_params_wlr) | |
) | |
schedulers.append( | |
{ | |
"scheduler": glyph_scheduler, | |
"interval": 'step', | |
'frequency': 1 | |
} | |
) | |
return opts, schedulers | |
# TODO: adapt to new model | |
def low_vram_shift(self, is_diffusing): | |
if is_diffusing: | |
self.model = self.model.cuda() | |
self.control_model = self.control_model.cuda() | |
self.first_stage_model = self.first_stage_model.cpu() | |
self.cond_stage_model = self.cond_stage_model.cpu() | |
else: | |
self.model = self.model.cpu() | |
self.control_model = self.control_model.cpu() | |
self.first_stage_model = self.first_stage_model.cuda() | |
self.cond_stage_model = self.cond_stage_model.cuda() | |
# ema | |
def on_train_batch_end(self, *args, **kwargs): | |
if self.use_ema: | |
self.model_ema(self.control_model) | |
if not self.sd_locked: # Update | |
self.model_diffoutblock_ema(self.model.diffusion_model.output_blocks) | |
self.model_diffout_ema(self.model.diffusion_model.out) | |
if not self.freeze_glyph_image_encoder: | |
self.model_glyphcon_ema(self.glyph_control_model.image_encoder) | |
if self.trans_glyph_embed: | |
self.model_transglyph_ema(self.glyph_control_model.trans_glyph_emb_model) | |
if self.log_all_grad_norm: | |
zeroconvs = list(self.control_model.input_hint_block.named_parameters())[-2:] | |
zeroconvs.extend( | |
list(self.control_model.zero_convs.named_parameters()) | |
) | |
for item in zeroconvs: | |
self.log( | |
"zero_convs/{}_norm".format(item[0]), | |
item[1].cpu().detach().norm().item(), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log( | |
"zero_convs/{}_max".format(item[0]), | |
torch.max(item[1].cpu().detach()).item(), #TODO: lack torch.abs | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
gradnorm_list = [] | |
for param_group in self.trainer.optimizers[0].param_groups: | |
for p in param_group['params']: | |
# assert p.requires_grad and p.grad is not None | |
if p.requires_grad and p.grad is not None: | |
grad_norm_v = p.grad.cpu().detach().norm().item() | |
gradnorm_list.append(grad_norm_v) | |
# for name, p in self.named_parameters(): | |
# if p.requires_grad and p.grad is not None: | |
# grad_norm_v = p.grad.detach().norm().item() | |
# gradnorm_list.append(grad_norm_v) | |
# if "textemb_merge_model" in name: | |
# self.log("all_gradients/{}_norm".format(name), | |
# gradnorm_list[-1], | |
# prog_bar=False, logger=True, on_step=True, on_epoch=False | |
# ) | |
# # if grad_norm_v > 0.1: | |
# # print("the norm of gradient w.r.t {} > 0.1: {:.2f}".format | |
# # ( | |
# # name, grad_norm_v | |
# # )) | |
if len(gradnorm_list): | |
self.log("all_gradients/grad_norm_mean", | |
np.mean(gradnorm_list), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log("all_gradients/grad_norm_max", | |
np.max(gradnorm_list), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log("all_gradients/grad_norm_min", | |
np.min(gradnorm_list), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log("all_gradients/param_num", | |
len(gradnorm_list), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
if self.trans_textemb: | |
for name, p in self.trans_textemb_model.named_parameters(): | |
if p.requires_grad and p.grad is not None: | |
self.log( | |
"trans_textemb_gradient_norm/{}".format(name), | |
p.grad.cpu().detach().norm().item(), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log( | |
"trans_textemb_params/{}_norm".format(name), | |
p.cpu().detach().norm().item(), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log( | |
"trans_textemb_params/{}_abs_max".format(name), | |
torch.max(torch.abs(p.cpu().detach())).item(), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
if self.trans_glyph_embed: | |
for name, p in self.glyph_control_model.trans_glyph_emb_model.named_parameters(): | |
if p.requires_grad and p.grad is not None: | |
self.log( | |
"trans_glyph_embed_gradient_norm/{}".format(name), | |
p.grad.cpu().detach().norm().item(), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log( | |
"trans_glyph_embed_params/{}_norm".format(name), | |
p.cpu().detach().norm().item(), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
self.log( | |
"trans_glyph_embed_params/{}_abs_max".format(name), | |
torch.max(torch.abs(p.cpu().detach())).item(), | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
if self.learnable_conscale: | |
for i in range(len(self.control_scales)): | |
self.log( | |
"control_scale/control_{}".format(i), | |
self.control_scales[i], | |
prog_bar=False, logger=True, on_step=True, on_epoch=False | |
) | |
del gradnorm_list | |
del zeroconvs | |
# def freeze_unet(self): | |
# # Have some bugs | |
# self.model.eval() | |
# # self.model.train = disabled_train | |
# for param in self.model.parameters(): | |
# param.requires_grad = False | |
# if not self.sd_locked: | |
# self.model.diffusion_model.output_blocks.train() | |
# self.model.diffusion_model.out.train() | |
# for param in self.model.diffusion_model.out.parameters(): | |
# param.requires_grad = True | |
# for param in self.model.diffusion_model.output_blocks.parameters(): | |
# param.requires_grad = True |