import importlib import torch from torch import optim import numpy as np from inspect import isfunction from PIL import Image, ImageDraw, ImageFont def log_txt_as_img(wh, xc, size=10): # wh a tuple of (width, height) # xc a list of captions to plot b = len(xc) txts = list() for bi in range(b): txt = Image.new("RGB", wh, color="white") draw = ImageDraw.Draw(txt) font = ImageFont.truetype('data/DejaVuSans.ttf', size=size) nc = int(40 * (wh[0] / 256)) lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc)) try: draw.text((0, 0), lines, fill="black", font=font) except UnicodeEncodeError: print("Cant encode string for logging. Skipping.") txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txts.append(txt) txts = np.stack(txts) txts = torch.tensor(txts) return txts def ismap(x): if not isinstance(x, torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] > 3) def isimage(x): if not isinstance(x,torch.Tensor): return False return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def mean_flat(tensor): """ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def count_params(model, verbose=False): total_params = sum(p.numel() for p in model.parameters()) if verbose: print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") return total_params def instantiate_from_config(config): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) class AdamWwithEMAandWings(optim.Optimizer): # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298 def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code ema_power=1., param_names=()): """AdamW that saves EMA versions of the parameters.""" if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= ema_decay <= 1.0: raise ValueError("Invalid ema_decay value: {}".format(ema_decay)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay, ema_power=ema_power, param_names=param_names) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] ema_params_with_grad = [] state_sums = [] max_exp_avg_sqs = [] state_steps = [] amsgrad = group['amsgrad'] beta1, beta2 = group['betas'] ema_decay = group['ema_decay'] ema_power = group['ema_power'] for p in group['params']: if p.grad is None: continue params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError('AdamW does not support sparse gradients') grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of parameter values state['param_exp_avg'] = p.detach().float().clone() exp_avgs.append(state['exp_avg']) exp_avg_sqs.append(state['exp_avg_sq']) ema_params_with_grad.append(state['param_exp_avg']) if amsgrad: max_exp_avg_sqs.append(state['max_exp_avg_sq']) # update the steps for each param group update state['step'] += 1 # record the step after step update state_steps.append(state['step']) optim._functional.adamw(params_with_grad, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, amsgrad=amsgrad, beta1=beta1, beta2=beta2, lr=group['lr'], weight_decay=group['weight_decay'], eps=group['eps'], maximize=False) cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power) for param, ema_param in zip(params_with_grad, ema_params_with_grad): ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) return loss def islistortuple(item): if isinstance(item, list) or isinstance(item, tuple): return True else: return False