from omegaconf import OmegaConf from scripts.rendertext_tool import Render_Text, load_model_from_config import torch cfg = OmegaConf.load("config_ema.yaml") # model = load_model_from_config(cfg, "model_states.pt", verbose=True) model = load_model_from_config(cfg, "mp_rank_00_model_states.pt", verbose=True) from pytorch_lightning.callbacks import ModelCheckpoint with model.ema_scope("store ema weights"): model_sd = model.state_dict() store_sd = {} for key in model_sd: if "ema" in key: continue store_sd[key] = model_sd[key] file_content = { 'state_dict': store_sd } torch.save(file_content, "model_wo_ema.ckpt") print("has stored the transfered ckpt.") print("trial ends!")