import torch import torch.nn as nn from torch.utils.checkpoint import checkpoint from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, T5ForConditionalGeneration, AutoTokenizer, ByT5Tokenizer from transformers import AutoProcessor, CLIPVisionModel import open_clip from ldm.util import default, count_params, islistortuple from transformers import PreTrainedTokenizerBase from ldm.modules.diffusionmodules.util import zero_module, identity_init_fc class AbstractEncoder(nn.Module): def __init__(self): super().__init__() def encode(self, *args, **kwargs): raise NotImplementedError class IdentityEncoder(AbstractEncoder): def encode(self, x): return x class ClassEmbedder(nn.Module): def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1): super().__init__() self.key = key self.embedding = nn.Embedding(n_classes, embed_dim) self.n_classes = n_classes self.ucg_rate = ucg_rate def forward(self, batch, key=None, disable_dropout=False): if key is None: key = self.key # this is for use in crossattn c = batch[key][:, None] if self.ucg_rate > 0. and not disable_dropout: mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1) c = c.long() c = self.embedding(c) return c def get_unconditional_conditioning(self, bs, device="cuda"): uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000) uc = torch.ones((bs,), device=device) * uc_class uc = {self.key: uc} return uc def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self class FrozenT5Embedder_old(AbstractEncoder): """Uses the T5 transformer encoder for text""" def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl super().__init__() self.tokenizer = T5Tokenizer.from_pretrained(version) self.transformer = T5EncoderModel.from_pretrained(version) self.device = device self.max_length = max_length # TODO: typical value? if freeze: self.freeze() def freeze(self): self.transformer = self.transformer.eval() #self.train = disabled_train for param in self.parameters(): param.requires_grad = False def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) outputs = self.transformer(input_ids=tokens) z = outputs.last_hidden_state return z def encode(self, text): return self(text) class FrozenT5Embedder(AbstractEncoder): """Uses the T5/ByT5 transformer encoder for text""" def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True, padding="max_length"): # version: others for T5 are google/t5-v1_1-xl, google/t5-v1_1-xxl, google/t5-v1_1-small, google/t5-v1_1-base and google/t5-v1_1-large # for ByT5 are google/byt5-small, google/byt5-base, google/byt5-large, google/byt5-xl and google/byt5-xxl # padding: "max_length" or "longest" # https://huggingface.co/docs/transformers/v4.24.0/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase super().__init__() self.tokenizer = T5Tokenizer.from_pretrained(version) if "byt5" not in version else ByT5Tokenizer.from_pretrained(version) self.transformer = T5EncoderModel.from_pretrained(version) self.device = device self.max_length = max_length # TODO: typical value? self.padding = padding if freeze: self.freeze() def freeze(self): self.transformer = self.transformer.eval() #self.train = disabled_train for param in self.parameters(): param.requires_grad = False def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding=self.padding, return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) outputs = self.transformer(input_ids=tokens) z = outputs.last_hidden_state return z def encode(self, text): return self(text) # class FrozenByT5Embedder(FrozenT5Embedder): # """Uses the ByT5 transformer encoder for text""" # def __init__(self, version="google/byt5-small", device="cuda", max_length=77, freeze=True): # others are google/byt5-v1_1-xl and google/t5-v1_1-xxl # # super(super()).__init__() # nn.Module.__init__(self) # print(dir(super())) # # self.tokenizer = T5Tokenizer.from_pretrained(version) # # self.transformer = T5EncoderModel.from_pretrained(version) # self.tokenizer = AutoTokenizer.from_pretrained(version) # self.model = T5ForConditionalGeneration.from_pretrained(version) # self.tokenizer_new = ByT5Tokenizer.from_pretrained(version) # self.transformer = T5EncoderModel.from_pretrained(version) # self.device = device # self.max_length = max_length # TODO: typical value? # if freeze: # self.freeze() # def forward(self, text): # # code base: https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/tokenization_utils_base.py#L2414 # batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, # return_overflowing_tokens=False, padding="max_length", return_tensors="pt") # tokens = batch_encoding["input_ids"].to(self.device) # outputs = self.transformer(input_ids=tokens) # z = outputs.last_hidden_state # return z class FrozenCLIPEmbedder(AbstractEncoder): """Uses the CLIP transformer encoder for text (from huggingface)""" LAYERS = [ "last", "pooled", "hidden" ] def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 super().__init__() assert layer in self.LAYERS self.tokenizer = CLIPTokenizer.from_pretrained(version) self.transformer = CLIPTextModel.from_pretrained(version) self.device = device self.max_length = max_length if freeze: self.freeze() self.layer = layer self.layer_idx = layer_idx if layer == "hidden": assert layer_idx is not None assert 0 <= abs(layer_idx) <= 12 def freeze(self): self.transformer = self.transformer.eval() #self.train = disabled_train for param in self.parameters(): param.requires_grad = False def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") if self.layer == "last": z = outputs.last_hidden_state elif self.layer == "pooled": z = outputs.pooler_output[:, None, :] else: z = outputs.hidden_states[self.layer_idx] return z def encode(self, text): return self(text) class FrozenOpenCLIPEmbedder(AbstractEncoder): """ Uses the OpenCLIP transformer encoder for text """ LAYERS = [ #"pooled", "last", "penultimate" ] def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, freeze=True, layer="last"): super().__init__() assert layer in self.LAYERS print("Start initializing the CLIP text encoder") model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version) print("Initialization ends") # aa = model.encode_image(torch.zeros((1, 3,224,224))) del model.visual self.model = model self.device = device self.max_length = max_length if freeze: self.freeze() self.layer = layer if self.layer == "last": self.layer_idx = 0 elif self.layer == "penultimate": self.layer_idx = 1 else: raise NotImplementedError() def freeze(self): self.model = self.model.eval() for param in self.parameters(): param.requires_grad = False def forward(self, text): tokens = open_clip.tokenize(text) z = self.encode_with_transformer(tokens.to(self.device)) return z def encode_with_transformer(self, text): x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] x = x + self.model.positional_embedding x = x.permute(1, 0, 2) # NLD -> LND x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) x = x.permute(1, 0, 2) # LND -> NLD x = self.model.ln_final(x) # did not do: # x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.model.text_projection # x = F.normalize(x, dim=-1) if normalize else x return x def text_transformer_forward(self, x: torch.Tensor, attn_mask = None): for i, r in enumerate(self.model.transformer.resblocks): if i == len(self.model.transformer.resblocks) - self.layer_idx: break if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(r, x, attn_mask) else: x = r(x, attn_mask=attn_mask) return x def encode(self, text): return self(text) class FrozenOpenCLIPSepEncoder(FrozenOpenCLIPEmbedder): def forward(self, text): if islistortuple(text) and len(text) > 0 and islistortuple(text[0]): z_list = [] for ti in text: tokens = open_clip.tokenize(ti) z = self.encode_with_transformer(tokens.to(self.device)) z_list.append(z) return z_list else: tokens = open_clip.tokenize(text) z = self.encode_with_transformer(tokens.to(self.device)) return z class FrozenCLIPT5Encoder(AbstractEncoder): def __init__(self, clip_version="openai/clip-vit-large-patch14", clip_max_length=77, layer="last", layer_idx=None, t5_version="google/t5-v1_1-xl", t5_max_length=77, padding="max_length", freeze=True, device="cuda"): super().__init__() self.clip_encoder = FrozenCLIPEmbedder( clip_version, device, max_length=clip_max_length, freeze=freeze, layer=layer, layer_idx=layer_idx ) self.t5_encoder = FrozenT5Embedder( t5_version, device, max_length=t5_max_length, freeze=freeze, padding=padding ) print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.") def encode(self, text): return self(text) def forward(self, text): clip_z = self.clip_encoder.encode(text) t5_z = self.t5_encoder.encode(text) return [clip_z, t5_z] class FrozenOpenCLIPT5Encoder(AbstractEncoder): def __init__(self, arch="ViT-H-14", clip_version="laion2b_s32b_b79k", layer="last", clip_max_length=77, t5_version="google/t5-v1_1-small", t5_max_length=77, padding="max_length", device="cuda", freeze=True): super().__init__() self.clip_encoder = FrozenOpenCLIPEmbedder( arch=arch, version=clip_version, device=device, max_length=clip_max_length, freeze=freeze, layer=layer ) self.t5_encoder = FrozenT5Embedder( t5_version, device, max_length=t5_max_length, freeze=freeze, padding=padding ) print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.") def encode(self, text): return self(text) def forward(self, text): clip_z = self.clip_encoder.encode(text) #B*77*1024 t5_z = self.t5_encoder.encode(text) #B*77*Z return [clip_z, t5_z] class FrozenOpenCLIPT5SepEncoder(FrozenOpenCLIPT5Encoder): def forward(self, text): if islistortuple(text) and len(text) > 0 and islistortuple(text[0]): assert len(text) == 2 print("two separate input prompts") clip_z = self.clip_encoder.encode(text[0]) #B*77*1024 t5_z = self.t5_encoder.encode(text[1]) #B*77*Z else: clip_z = self.clip_encoder.encode(text) #B*77*1024 t5_z = self.t5_encoder.encode(text) #B*77*Z return [clip_z, t5_z] class MergeTextEmb(nn.Module): def __init__(self, clip_emb_dim, t5_emb_dim, out_emb_dim=None, trainable=True, merge_mode="add", t5_fc_init="zero"): super().__init__() out_emb_dim = default(out_emb_dim, clip_emb_dim) self.clip_fc = identity_init_fc(nn.Linear(clip_emb_dim, out_emb_dim)) if t5_fc_init == "zero": self.t5_fc = zero_module(nn.Linear(t5_emb_dim, out_emb_dim)) elif t5_fc_init == "identity": self.t5_fc = identity_init_fc(nn.Linear(t5_emb_dim, out_emb_dim)) else: "The initialization way {} is not supported.".format(t5_fc_init) raise ValueError self.trainable = trainable self.merge_mode = merge_mode def forward(self, clip_emb, t5_emb): clip_out = self.clip_fc(clip_emb) t5_out = self.t5_fc(t5_emb) if self.merge_mode == "concat": merge_out = torch.cat([clip_out, t5_out], dim=1) elif self.merge_mode == "add": assert clip_out.shape == t5_out.shape merge_out = clip_out + t5_out else: print("invalid merging way: {}".format(self.merge_mode)) raise ValueError return merge_out class TransTextEmb(nn.Module): def __init__(self, unet_context_dim, emb_dims, fc_inits=None, trans_trainable = None): super().__init__() # assert isinstance(emb_dims, list) emb_num = len(emb_dims) if fc_inits is not None: # assert isinstance(fc_inits, list) and assert len(fc_inits) == emb_num else: fc_inits = ["random" for i in range(emb_num)] if trans_trainable is not None: # assert isinstance(trans_trainable, list) and assert len(trans_trainable) == emb_num else: trans_trainable = [True for i in range(emb_num)] module_list = nn.ModuleList([]) for i in range(emb_num): trans = nn.Linear(emb_dims[i], unet_context_dim) if fc_inits[i] == "zero": trans = zero_module(trans) elif fc_inits[i] == "identity": trans = identity_init_fc(trans) module_list.append(trans) self.trans_list = module_list self.trans_trainable = trans_trainable self.emb_num = emb_num def forward(self, emb_list): assert len(emb_list) == self.emb_num emb_out_list = [] for i in range(self.emb_num): emb_out = self.trans_list[i](emb_list[i]) emb_out_list.append(emb_out) return emb_out_list class FrozenOpenCLIPT5ByT5Encoder(AbstractEncoder): def __init__(self, arch="ViT-H-14", clip_version="laion2b_s32b_b79k", layer="last", clip_max_length=77, t5_version="google/t5-v1_1-large", t5_max_length=77, padding="max_length", byt5_version="google/byt5-large", byt5_max_length=77, byt5_padding="max_length", device="cuda", freeze=True): super().__init__() self.clip_encoder = FrozenOpenCLIPEmbedder( arch=arch, version=clip_version, device=device, max_length=clip_max_length, freeze=freeze, layer=layer ) self.t5_encoder = FrozenT5Embedder( t5_version, device, max_length=t5_max_length, freeze=freeze, padding=padding ) self.byt5_encoder = FrozenT5Embedder( byt5_version, device, max_length=byt5_max_length, freeze=freeze, padding=byt5_padding ) print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params." f"{self.byt5_encoder.__class__.__name__} comes with {count_params(self.byt5_encoder)*1.e-6:.2f} M params.") def encode(self, text): return self(text) def forward(self, text): clip_z = self.clip_encoder.encode(text) #B*77*1024 t5_z = self.t5_encoder.encode(text) #B*77*Z byt5_z = self.byt5_encoder.encode(text) return [clip_z, t5_z, byt5_z] class FrozenOpenCLIPT5ByT5SepEncoder(FrozenOpenCLIPT5ByT5Encoder): def forward(self, text): if islistortuple(text) and len(text) > 0 and islistortuple(text[0]): assert len(text) <= 3 clip_text = text[0] t5_text = text[1] if len(text) > 1 else text[0] byt5_text = text[-1] # clip_z = self.clip_encoder.encode(text[0]) #B*77*1024 # t5_z = self.t5_encoder.encode(text[1]) #B*77*Z_1 # if len(text) == 2: # byt5_z = self.byt5_encoder.encode(text[1]) #B*77*Z_2 # else: # byt5_z = self.byt5_encoder.encode(text[2]) #B*77*Z_2 else: clip_text = text t5_text = text byt5_text = text clip_z = self.clip_encoder.encode(clip_text) #B*77*1024 t5_z = self.t5_encoder.encode(t5_text) #B*77*Z_1 byt5_z = self.byt5_encoder.encode(byt5_text) #B*77*Z_2 del clip_text, t5_text, byt5_text return [clip_z, t5_z, byt5_z] class OpenCLIPImageEmbedder(AbstractEncoder): """ Uses the OpenCLIP transformer encoder for image """ # LAYERS = [ # #"pooled", # "last", # "penultimate" # ] def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", #stage = "train", # max_length=77, layer = "last", freeze=True, set_grad_checkpointing = True): super().__init__() # assert layer in self.LAYERS model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version) # del model.visual self.image_mean = model.visual.image_mean self.image_std = model.visual.image_std del model.transformer del model.token_embedding del model.positional_embedding del model.ln_final del model.text_projection del model.logit_scale # only model.visual is left # open_clip.model._build_vision_tower() self.model = model self.device = device if not freeze and set_grad_checkpointing: self.model.visual.set_grad_checkpointing(True) # if freeze: # self.freeze() # else: # if set_grad_checkpointing: # self.model.visual.set_grad_checkpointing(True) self.freeze_model = freeze # def freeze(self): # self.model = self.model.eval() # for param in self.parameters(): #392 # param.requires_grad = False def forward(self, img): z = self.model.encode_image(img) # 2.0.2 , normalize=False) 2.7.0 # tokens = open_clip.tokenize(text) # z = self.encode_with_transformer(tokens.to(self.device)) return z def encode(self, img): return self(img)