File size: 32,361 Bytes
54f3112
 
 
 
 
 
f5bfcdc
54f3112
 
 
 
 
f5bfcdc
 
 
 
 
 
54f3112
 
 
 
 
 
b7f2473
54f3112
 
 
43a97f8
54f3112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98e0fb3
 
54f3112
 
 
 
 
 
 
 
 
 
43a97f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98e0fb3
 
43a97f8
 
 
 
 
 
 
 
 
 
 
54f3112
 
 
 
 
 
43a97f8
 
54f3112
 
 
43a97f8
 
 
54f3112
 
 
 
f5bfcdc
43a97f8
 
 
 
 
255a4d2
43a97f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255a4d2
43a97f8
 
255a4d2
43a97f8
 
 
255a4d2
43a97f8
 
255a4d2
43a97f8
 
 
255a4d2
43a97f8
 
255a4d2
54f3112
43a97f8
 
 
 
 
 
54f3112
43a97f8
54f3112
43a97f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255a4d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a97f8
54f3112
43a97f8
 
 
255a4d2
43a97f8
 
a7b9847
 
 
43a97f8
 
 
 
 
 
 
255a4d2
 
 
a7b9847
 
 
 
 
 
 
43a97f8
a7b9847
 
 
 
255a4d2
43a97f8
a7b9847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a97f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255a4d2
 
 
43a97f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255a4d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54f3112
 
cde8217
 
 
 
 
c4d90ef
 
 
 
 
cde8217
20e4287
cde8217
 
 
 
467aefa
20e4287
 
 
 
 
c4d90ef
54f3112
c4d90ef
54f3112
 
20e4287
 
 
 
 
cde8217
 
 
 
54f3112
 
 
 
 
 
 
 
20e4287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cde8217
 
 
 
 
 
 
 
20e4287
cde8217
 
 
 
 
 
 
 
 
20e4287
04a0fb2
 
 
 
20e4287
 
04a0fb2
 
20e4287
04a0fb2
20e4287
 
 
43a97f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20e4287
 
43a97f8
62dd8c2
20e4287
 
 
 
 
 
 
 
 
 
 
 
 
 
cde8217
 
 
20e4287
cde8217
43a97f8
 
 
20e4287
 
 
54f3112
 
 
 
 
 
 
 
 
 
 
 
 
 
20e4287
c4d90ef
20e4287
 
 
 
cde8217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a97f8
04a0fb2
 
 
 
54f3112
 
04a0fb2
 
54f3112
04a0fb2
54f3112
 
04a0fb2
54f3112
43a97f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20e4287
54f3112
43a97f8
62dd8c2
54f3112
 
 
 
 
 
 
 
 
 
 
 
 
 
cde8217
 
 
54f3112
cde8217
43a97f8
 
 
54f3112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d90ef
54f3112
 
c4d90ef
54f3112
 
 
 
 
 
 
 
c4d90ef
54f3112
 
 
 
 
 
 
43a97f8
f5bfcdc
43a97f8
 
 
 
 
 
 
 
54f3112
 
 
 
c4d90ef
54f3112
 
 
 
 
6379863
 
 
54f3112
 
 
43a97f8
54f3112
 
 
 
43a97f8
a7b9847
43a97f8
 
 
 
 
 
 
 
 
 
 
 
54f3112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a97f8
 
54f3112
 
 
43a97f8
 
54f3112
 
 
 
43a97f8
cde8217
 
43a97f8
 
 
54f3112
 
 
43a97f8
54f3112
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import json
import pdb
import tempfile
import re
from constants import *
from src.auto_leaderboard.model_metadata_type import ModelType

global data_component, filter_component

def validate_model_size(s):
    pattern = r'^\d+B$|^-$'
    if re.match(pattern, s):
        return s
    else:
        return '-'

def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths

def prediction_analyse(prediction_content):
    # pdb.set_trace()
    predictions = prediction_content.split("\n")

    # 读取 ground_truth JSON 文件
    with open("./file/SEED-Bench-1.json", "r") as file:
        ground_truth_data = json.load(file)["questions"]

    # 将 ground_truth 数据转换为以 question_id 为键的字典
    ground_truth = {item["question_id"]: item for item in ground_truth_data}

    # 初始化结果统计字典
    results = {i: {"correct": 0, "total": 0} for i in range(1, 13)}

    # 遍历 predictions,计算每个 question_type_id 的正确预测数和总预测数
    for prediction in predictions:
        # pdb.set_trace()
        prediction = prediction.strip()
        if not prediction:
            continue
        try:
            prediction = json.loads(prediction)
        except json.JSONDecodeError:
            print(f"Warning: Skipping invalid JSON data in line: {prediction}")
            continue
        question_id = prediction["question_id"]
        if question_id not in ground_truth:
            continue
        gt_item = ground_truth[question_id]
        question_type_id = gt_item["question_type_id"]

        if prediction["prediction"] == gt_item["answer"]:
            results[question_type_id]["correct"] += 1

        results[question_type_id]["total"] += 1
    
    return results

def prediction_analyse_v2(prediction_content):
    # pdb.set_trace()
    predictions = prediction_content.split("\n")

    # 读取 ground_truth JSON 文件
    with open("./file/SEED-Bench-2.json", "r") as file:
        ground_truth_data = json.load(file)["questions"]

    # 将 ground_truth 数据转换为以 question_id 为键的字典
    ground_truth = {item["question_id"]: item for item in ground_truth_data}

    # 初始化结果统计字典
    results = {i: {"correct": 0, "total": 0} for i in range(1, 28)}

    # 遍历 predictions,计算每个 question_type_id 的正确预测数和总预测数
    for prediction in predictions:
        # pdb.set_trace()
        prediction = prediction.strip()
        if not prediction:
            continue
        try:
            prediction = json.loads(prediction)
        except json.JSONDecodeError:
            print(f"Warning: Skipping invalid JSON data in line: {prediction}")
            continue
        question_id = prediction["question_id"]
        if question_id not in ground_truth:
            continue
        gt_item = ground_truth[question_id]
        question_type_id = gt_item["question_type_id"]

        if prediction["prediction"] == gt_item["answer"]:
            results[question_type_id]["correct"] += 1

        results[question_type_id]["total"] += 1
    
    return results


def add_new_eval(
    input_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    model_type: str,
    model_link: str,
    model_size: str,
    benchmark_version: str,
    LLM_type: str,
    LLM_name_textbox: str,
    Evaluation_dimension: str,
    Evaluation_dimension_2: str,
    Evaluation_method: str

):
    if input_file is None:
        return "Error! Empty file!"
    else:
        model_size = validate_model_size(model_size)
        # v1 evaluation
        if benchmark_version == 'v1':
            content = input_file.decode("utf-8")
            prediction = prediction_analyse(content)
            csv_data = pd.read_csv(CSV_DIR)
            csv_task_data = pd.read_csv(CSV_TASK_DIR)

            Start_dimension, End_dimension = 1, 13
            if Evaluation_dimension == 'Image':
                End_dimension = 10
            elif Evaluation_dimension == 'Video':
                Start_dimension = 10
            each_task_accuracy = {i: round(prediction[i]["correct"] / prediction[i]["total"] * 100, 1) if i >= Start_dimension and i < End_dimension else 0 for i in range(1, 13)}

            # count for average image\video\all
            total_correct_image = sum(prediction[i]["correct"] for i in range(1, 10))
            total_correct_video = sum(prediction[i]["correct"] for i in range(10, 13))

            total_image = sum(prediction[i]["total"] for i in range(1, 10))
            total_video = sum(prediction[i]["total"] for i in range(10, 13))

            if Evaluation_dimension != 'Video':
                average_accuracy_image = round(total_correct_image / total_image * 100, 1)
                average_task_accuracy_image = round(sum(each_task_accuracy[key] for key in range(1,10)) / 9, 1)
            else:
                average_accuracy_image = 0
                average_task_accuracy_image = 0
            
            if Evaluation_dimension != 'Image':
                average_accuracy_video = round(total_correct_video / total_video * 100, 1)
                average_task_accuracy_video = round(sum(each_task_accuracy[key] for key in range(10,13)) / 3, 1)
            else:
                average_accuracy_video = 0
                average_task_accuracy_video = 0
            
            if Evaluation_dimension == 'All':
                overall_accuracy = round((total_correct_image + total_correct_video) / (total_image + total_video) * 100, 1)
                overall_task_accuracy = round(sum(each_task_accuracy[key] for key in range(1,13)) / 12, 1)
            else:
                overall_accuracy = 0
                overall_task_accuracy = 0

            if LLM_type == 'Other':
                LLM_name = LLM_name_textbox
            else:
                LLM_name = LLM_type
            
            if revision_name_textbox == '':
                col = csv_data.shape[0]
                model_name = model_name_textbox
            else:
                model_name = revision_name_textbox
                model_name_list = csv_data['Model']
                name_list = [name.split(']')[0][1:] for name in model_name_list]
                if revision_name_textbox not in name_list:
                    col = csv_data.shape[0]
                else:
                    col = name_list.index(revision_name_textbox)    
            
            if model_link == '':
                model_name = model_name  # no url
            else:
                model_name = '[' + model_name + '](' + model_link + ')'

            # add new data
            new_data = [
                model_type, 
                model_name, 
                LLM_name,
                model_size,
                Evaluation_method,
                overall_accuracy,
                average_accuracy_image,
                average_accuracy_video,
                each_task_accuracy[1],
                each_task_accuracy[2],
                each_task_accuracy[3],
                each_task_accuracy[4],
                each_task_accuracy[5],
                each_task_accuracy[6],
                each_task_accuracy[7],
                each_task_accuracy[8],
                each_task_accuracy[9],
                each_task_accuracy[10],
                each_task_accuracy[11],
                each_task_accuracy[12], 
                ]
            csv_data.loc[col] = new_data
            csv_data = csv_data.to_csv(CSV_DIR, index=False)

            new_task_data = [
                model_type, 
                model_name, 
                LLM_name,
                model_size,
                Evaluation_method,
                overall_task_accuracy,
                average_task_accuracy_image,
                average_task_accuracy_video,
                each_task_accuracy[1],
                each_task_accuracy[2],
                each_task_accuracy[3],
                each_task_accuracy[4],
                each_task_accuracy[5],
                each_task_accuracy[6],
                each_task_accuracy[7],
                each_task_accuracy[8],
                each_task_accuracy[9],
                each_task_accuracy[10],
                each_task_accuracy[11],
                each_task_accuracy[12], 
                ]
            csv_task_data.loc[col] = new_data
            csv_task_data = csv_task_data.to_csv(CSV_TASK_DIR, index=False)
        # v2 evaluation
        else:
            content = input_file.decode("utf-8")
            prediction = prediction_analyse_v2(content)
            csv_data = pd.read_csv(CSV_V2_DIR)
            csv_task_data = pd.read_csv(CSV_V2_TASK_DIR)

            Start_dimension, End_dimension = 1, 28
            if Evaluation_dimension_2 == 'Single':
                End_dimension = 17
            elif Evaluation_dimension_2 == 'L1':
                End_dimension = 23
            elif Evaluation_dimension_2 == 'L2':
                End_dimension = 25
            elif Evaluation_dimension_2 == 'L3':
                End_dimension = 28
            # pdb.set_trace()
            each_task_accuracy = {i: round(prediction[i]["correct"] / prediction[i]["total"] * 100, 1) if i >= Start_dimension and i < End_dimension else 0 for i in range(1, 28)}
            
            average_single = round(sum(prediction[i]["correct"] for i in range(1, 17)) / sum(prediction[i]["total"] for i in range(1, 17)) * 100, 1)
            average_task_single = round(sum(each_task_accuracy[key] for key in range(1,17)) / 16, 1)
            
            # Single
            if Evaluation_dimension_2 == 'Single':
                average_multi = 0
                average_video = 0
                average_p1 = 0
                average_p2 = 0 
                average_p3 = 0
                average_task_multi = 0
                average_task_video = 0
                average_task_p1 = 0
                average_task_p2 = 0
                average_task_p3 = 0
            else:
                average_multi = round(sum(prediction[i]["correct"] for i in range(17, 19)) / sum(prediction[i]["total"] for i in range(17, 19)) * 100, 1)
                average_video = round(sum(prediction[i]["correct"] for i in range(19, 23)) / sum(prediction[i]["total"] for i in range(19, 23)) * 100, 1)
                average_p1 = round(sum(prediction[i]["correct"] for i in range(1, 23)) / sum(prediction[i]["total"] for i in range(1, 23)) * 100, 1)
                average_task_multi = round(sum(each_task_accuracy[key] for key in range(17,19)) / 2, 1)
                average_task_video = round(sum(each_task_accuracy[key] for key in range(19,23)) / 4, 1)
                average_task_p1 = round(sum(each_task_accuracy[key] for key in range(1,23)) / 22, 1)
                # L2
                if Evaluation_dimension_2 == 'L2':
                    average_p2 = round(sum(prediction[i]["correct"] for i in range(23, 25)) / sum(prediction[i]["total"] for i in range(23, 25)) * 100, 1)
                    average_task_p2 = round(sum(each_task_accuracy[key] for key in range(23,25)) / 2, 1)
                    average_p3 = 0
                    average_task_p3 = 0
                # L3
                elif Evaluation_dimension_2 == 'L3':
                    average_p2 = round(sum(prediction[i]["correct"] for i in range(23, 25)) / sum(prediction[i]["total"] for i in range(23, 25)) * 100, 1)
                    average_task_p2 = round(sum(each_task_accuracy[key] for key in range(23,25)) / 2, 1)
                    average_p3 = round(sum(prediction[i]["correct"] for i in range(25, 28)) / sum(prediction[i]["total"] for i in range(25, 28)) * 100, 1)
                    average_task_p3 = round(sum(each_task_accuracy[key] for key in range(25,28)) / 3, 1)
                # L1
                else:
                    average_p2 = 0
                    average_task_p2 = 0
                    average_p3 = 0
                    average_task_p3 = 0
            
            if LLM_type == 'Other':
                LLM_name = LLM_name_textbox
            else:
                LLM_name = LLM_type
            
            if revision_name_textbox == '':
                col = csv_data.shape[0]
                model_name = model_name_textbox
            else:
                model_name = revision_name_textbox
                model_name_list = csv_data['Model']
                name_list = [name.split(']')[0][1:] for name in model_name_list]
                if revision_name_textbox not in name_list:
                    col = csv_data.shape[0]
                else:
                    col = name_list.index(revision_name_textbox)    
            
            if model_link == '':
                model_name = model_name  # no url
            else:
                model_name = '[' + model_name + '](' + model_link + ')'

            # add new data
            new_data = [
                model_name, 
                LLM_name, 
                model_size,
                Evaluation_method,
                average_single,
                average_multi,
                average_video,
                average_p1,
                average_p2,
                average_p3,
                each_task_accuracy[1],
                each_task_accuracy[2],
                each_task_accuracy[3],
                each_task_accuracy[4],
                each_task_accuracy[5],
                each_task_accuracy[6],
                each_task_accuracy[7],
                each_task_accuracy[8],
                each_task_accuracy[9],
                each_task_accuracy[10],
                each_task_accuracy[11],
                each_task_accuracy[12], 
                each_task_accuracy[13], 
                each_task_accuracy[14], 
                each_task_accuracy[15], 
                each_task_accuracy[16], 
                each_task_accuracy[17], 
                each_task_accuracy[18], 
                each_task_accuracy[19], 
                each_task_accuracy[20], 
                each_task_accuracy[21], 
                each_task_accuracy[22], 
                each_task_accuracy[23], 
                each_task_accuracy[24], 
                each_task_accuracy[25], 
                each_task_accuracy[26], 
                each_task_accuracy[27]
                ]
            csv_data.loc[col] = new_data
            csv_data = csv_data.to_csv(CSV_V2_DIR, index=False)

            new_task_data = [
                model_name, 
                LLM_name, 
                model_size,
                Evaluation_method,
                average_task_single,
                average_task_multi,
                average_task_video,
                average_task_p1,
                average_task_p2,
                average_task_p3,
                each_task_accuracy[1],
                each_task_accuracy[2],
                each_task_accuracy[3],
                each_task_accuracy[4],
                each_task_accuracy[5],
                each_task_accuracy[6],
                each_task_accuracy[7],
                each_task_accuracy[8],
                each_task_accuracy[9],
                each_task_accuracy[10],
                each_task_accuracy[11],
                each_task_accuracy[12], 
                each_task_accuracy[13], 
                each_task_accuracy[14], 
                each_task_accuracy[15], 
                each_task_accuracy[16], 
                each_task_accuracy[17], 
                each_task_accuracy[18], 
                each_task_accuracy[19], 
                each_task_accuracy[20], 
                each_task_accuracy[21], 
                each_task_accuracy[22], 
                each_task_accuracy[23], 
                each_task_accuracy[24], 
                each_task_accuracy[25], 
                each_task_accuracy[26], 
                each_task_accuracy[27]
                ]
            csv_task_data.loc[col] = new_task_data
            csv_task_data = csv_task_data.to_csv(CSV_V2_TASK_DIR, index=False)
    return 0

def get_baseline_df(average_type):
    if average_type == 'All Average':
        df = pd.read_csv(CSV_DIR)
    else:
        df = pd.read_csv(CSV_TASK_DIR)
    df = df.sort_values(by="Avg. All", ascending=False)
    present_columns = MODEL_INFO + checkbox_group.value
    df = df[present_columns]
    return df

def get_baseline_v2_df(average_type):
    # pdb.set_trace()
    if average_type == 'All Average':
        df = pd.read_csv(CSV_V2_DIR)
    else:
        df = pd.read_csv(CSV_V2_TASK_DIR)
    df = df.sort_values(by="Avg. Single", ascending=False)
    present_columns = MODEL_INFO_V2 + checkbox_group_v2.value
    # pdb.set_trace()
    df = df[present_columns]
    return df

def get_all_df():
    df = pd.read_csv(CSV_DIR)
    df = df.sort_values(by="Avg. All", ascending=False)
    return df

def get_all_v2_df():
    df = pd.read_csv(CSV_V2_DIR)
    df = df.sort_values(by="Avg. P1", ascending=False)
    return df


def switch_version(version):
    return f"当前版本: {version}"

block = gr.Blocks()


with block:
    gr.Markdown(
        LEADERBORAD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 SEED Benchmark v2", elem_id="seed-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                    ).style(show_copy_button=True)
    
            gr.Markdown(
                TABLE_INTRODUCTION
            )

            # selection for column part:
            checkbox_group_v2 = gr.CheckboxGroup(
                choices=TASK_V2_INFO,
                value=AVG_V2_INFO,
                label="Evaluation Dimension",
                interactive=True,
            )

            with gr.Row():
                # selection for model size part:
                model_size_v2 = gr.CheckboxGroup(
                    choices=MODEL_SIZE,
                    value=MODEL_SIZE,
                    label="Model Size",
                    interactive=True,
                )

                # selection for model size part:
                evaluation_method_v2 = gr.CheckboxGroup(
                    choices=EVALUATION_METHOD,
                    value=EVALUATION_METHOD,
                    label="Evaluation Method",
                    interactive=True,
                )

                average_type_v2 = gr.Radio(AVERAGE_TYPE, label="Performance Average Type", value="All Average")
            
            baseline_v2_value = get_baseline_v2_df(average_type_v2.value)
            baseline_v2_header = MODEL_INFO_V2 + checkbox_group_v2.value
            baseline_v2_datatype = ['markdown'] * 3 + ['number'] * len(checkbox_group_v2.value)
            # pdb.set_trace()
            # 创建数据帧组件
            data_component_v2 = gr.components.Dataframe(
                value=baseline_v2_value, 
                headers=baseline_v2_header,
                type="pandas", 
                datatype=baseline_v2_datatype,
                interactive=False,
                visible=True,
                )
            
            def on_filter_model_size_method_v2_change(selected_model_size, selected_evaluation_method, selected_columns):

                updated_data = get_all_v2_df()
                # model_size & evaluation_method:
                # 自定义过滤函数
                def custom_filter(row, model_size_filters, evaluation_method_filters):
                    model_size = row['Model Size']
                    evaluation_method = row['Evaluation Method']

                    if model_size == '-':
                        size_filter = '-' in model_size_filters
                    elif 'B' in model_size:
                        size = float(model_size.replace('B', ''))
                        size_filter = ('>=10B' in model_size_filters and size >= 10) or ('<10B' in model_size_filters and size < 10)
                    else:
                        size_filter = False

                    method_filter = evaluation_method in evaluation_method_filters

                    return size_filter and method_filter

                # 使用自定义过滤函数过滤数据
                mask = updated_data.apply(custom_filter, axis=1, model_size_filters=selected_model_size, evaluation_method_filters=selected_evaluation_method)
                updated_data = updated_data[mask]

                # columns:
                selected_columns = [item for item in TASK_V2_INFO if item in selected_columns]
                present_columns = MODEL_INFO_V2 + selected_columns
                updated_data = updated_data[present_columns]
                updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
                updated_headers = present_columns
                update_datatype = [DATA_TITILE_V2_TYPE[COLUMN_V2_NAMES.index(x)] for x in updated_headers]

                filter_component = gr.components.Dataframe(
                    value=updated_data, 
                    headers=updated_headers,
                    type="pandas", 
                    datatype=update_datatype,
                    interactive=False,
                    visible=True,
                    )
                # pdb.set_trace()
        
                return filter_component.value
            
            def on_average_type_v2_change(average_type_v2):
                return get_baseline_v2_df(average_type_v2)

            average_type_v2.change(fn=on_average_type_v2_change, inputs=[average_type_v2], outputs=data_component_v2)
            model_size_v2.change(fn=on_filter_model_size_method_v2_change, inputs=[model_size_v2, evaluation_method_v2, checkbox_group_v2], outputs=data_component_v2)
            evaluation_method_v2.change(fn=on_filter_model_size_method_v2_change, inputs=[model_size_v2, evaluation_method_v2, checkbox_group_v2], outputs=data_component_v2)
            checkbox_group_v2.change(fn=on_filter_model_size_method_v2_change, inputs=[model_size_v2, evaluation_method_v2, checkbox_group_v2], outputs=data_component_v2)

        # table seed-bench-v1
        with gr.TabItem("🏅 SEED Benchmark v1", elem_id="seed-benchmark-tab-table", id=1):
            with gr.Row():
                with gr.Accordion("Citation", open=False):
                    citation_button = gr.Textbox(
                        value=CITATION_BUTTON_TEXT,
                        label=CITATION_BUTTON_LABEL,
                        elem_id="citation-button",
                    ).style(show_copy_button=True)
    
            gr.Markdown(
                TABLE_INTRODUCTION
            )

            # selection for column part:
            checkbox_group = gr.CheckboxGroup(
                choices=TASK_INFO,
                value=AVG_INFO,
                label="Evaluation Dimension",
                interactive=True,
            )

            with gr.Row():
                # selection for model size part:
                model_size = gr.CheckboxGroup(
                    choices=MODEL_SIZE,
                    value=MODEL_SIZE,
                    label="Model Size",
                    interactive=True,
                )

                # selection for model size part:
                evaluation_method = gr.CheckboxGroup(
                    choices=EVALUATION_METHOD,
                    value=EVALUATION_METHOD,
                    label="Evaluation Method",
                    interactive=True,
                )

                average_type = gr.Radio(AVERAGE_TYPE, label="Performance Average Type", value="All Average")

            baseline_value = get_baseline_df(average_type.value)
            baseline_header = MODEL_INFO + checkbox_group.value
            baseline_datatype = ['markdown'] * 4 + ['number'] * len(checkbox_group.value)
            # pdb.set_trace()
            # 创建数据帧组件
            data_component = gr.components.Dataframe(
                value=baseline_value, 
                headers=baseline_header,
                type="pandas", 
                datatype=baseline_datatype,
                interactive=False,
                visible=True,
                )            
    
            def on_filter_model_size_method_change(selected_model_size, selected_evaluation_method, selected_columns):

                updated_data = get_all_df()
                # model_size & evaluation_method:
                # 自定义过滤函数
                def custom_filter(row, model_size_filters, evaluation_method_filters):
                    model_size = row['Model Size']
                    evaluation_method = row['Evaluation Method']

                    if model_size == '-':
                        size_filter = '-' in model_size_filters
                    elif 'B' in model_size:
                        size = float(model_size.replace('B', ''))
                        size_filter = ('>=10B' in model_size_filters and size >= 10) or ('<10B' in model_size_filters and size < 10)
                    else:
                        size_filter = False

                    method_filter = evaluation_method in evaluation_method_filters

                    return size_filter and method_filter

                # 使用自定义过滤函数过滤数据
                mask = updated_data.apply(custom_filter, axis=1, model_size_filters=selected_model_size, evaluation_method_filters=selected_evaluation_method)
                updated_data = updated_data[mask]

                # columns:
                selected_columns = [item for item in TASK_INFO if item in selected_columns]
                present_columns = MODEL_INFO + selected_columns
                updated_data = updated_data[present_columns]
                updated_data = updated_data.sort_values(by=selected_columns[0], ascending=False)
                updated_headers = present_columns
                update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]

                filter_component = gr.components.Dataframe(
                    value=updated_data, 
                    headers=updated_headers,
                    type="pandas", 
                    datatype=update_datatype,
                    interactive=False,
                    visible=True,
                    )
                # pdb.set_trace()
        
                return filter_component.value
            
            def on_average_type_change(average_type):
                return get_baseline_df(average_type)

            average_type.change(fn=on_average_type_change, inputs=[average_type], outputs=data_component)
            model_size.change(fn=on_filter_model_size_method_change, inputs=[model_size, evaluation_method, checkbox_group], outputs=data_component)
            evaluation_method.change(fn=on_filter_model_size_method_change, inputs=[model_size, evaluation_method, checkbox_group], outputs=data_component)
            checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[model_size, evaluation_method, checkbox_group], outputs=data_component)

        # table 2
        with gr.TabItem("📝 About", elem_id="seed-benchmark-tab-table", id=2):
            gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text")
        
        # table 3 
        with gr.TabItem("🚀 Submit here! ", elem_id="seed-benchmark-tab-table", id=3):
            gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name", placeholder="LLaMA-7B"
                        )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name", placeholder="LLaMA-7B"
                    )
                    model_type = gr.Dropdown(
                        choices=[                         
                            "LLM",
                            "ImageLLM",
                            "VideoLLM",
                            "Other", 
                        ], 
                        label="Model type", 
                        multiselect=False,
                        value="ImageLLM",
                        interactive=True,
                    )
                    model_link = gr.Textbox(
                        label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf"
                    )
                    model_size = gr.Textbox(
                        label="Model size", placeholder="7B(Input content format must be 'number+B' or '-', default is '-')"
                    )
                    benchmark_version= gr.Dropdown(
                        choices=["v1", "v2"],
                        label="Benchmark version", 
                        multiselect=False,
                        value="v1",
                        interactive=True,
                    )

                with gr.Column():
                    LLM_type = gr.Dropdown(
                        choices=["Vicuna-7B", "Flan-T5-XL", "LLaMA-7B", "Other"],
                        label="LLM type", 
                        multiselect=False,
                        value="LLaMA-7B",
                        interactive=True,
                    )
                    LLM_name_textbox = gr.Textbox(
                        label="LLM model (Required for Other)",
                        placeholder="LLaMA-13B",
                        value="LLaMA-13B",
                    )
                    Evaluation_dimension = gr.Dropdown(
                        choices=["All", "Image", "Video"],
                        label="Evaluation dimension for SEED-Bench 1(for evaluate SEED-Bench 1)", 
                        multiselect=False,
                        value="All",
                        interactive=True,
                    )
                    Evaluation_dimension_2 = gr.Dropdown(
                        choices=["Single", "L1", "L2", "L3"],
                        label="Evaluation dimension for SEED-Bench 2(for evaluate SEED-Bench 2)", 
                        multiselect=False,
                        value="L2",
                        interactive=True,
                    )
                    Evaluation_method = gr.Dropdown(
                        choices=EVALUATION_METHOD,
                        label="Evaluation method", 
                        multiselect=False,
                        value=EVALUATION_METHOD[0],
                        interactive=True,
                    )

            with gr.Column():

                input_file = gr.inputs.File(label = "Click to Upload a json File", file_count="single", type='binary')
                submit_button = gr.Button("Submit Eval")
    
                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs = [
                        input_file,
                        model_name_textbox,
                        revision_name_textbox,
                        model_type,
                        model_link,
                        model_size,
                        benchmark_version,
                        LLM_type,
                        LLM_name_textbox,
                        Evaluation_dimension,
                        Evaluation_dimension_2,
                        Evaluation_method
                    ],
                )


    def refresh_data():
        value1 = get_baseline_df(average_type)
        value2 = get_baseline_v2_df(average_type_v2)

        return value1, value2

    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(
            refresh_data, outputs=[data_component, data_component_v2]
        )

    # block.load(get_baseline_df, outputs=data_title)

block.launch()