File size: 9,007 Bytes
4c59875
 
 
 
 
6964a16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c59875
6964a16
4c59875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a888db4
 
6964a16
 
a888db4
6964a16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c59875
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import pandas as pd
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go

explanation_data = {
    "Accuracy Scores (rename for clarity)": [
        "b4bqa",
        "b4b",
        "medmcqa_g2b",
        "medmcqa_orig_filtered",
        "medmcqa_diff",
        "medqa_4options_g2b",
        "medqa_4options_orig_filtered",
        "medqa_diff"
    ],
    "Description": [
        "Model accuracy on the B4BQA task.",
        "Average model accuracy on tasks where generic drug names are substituted with brand names.",
        "Model accuracy on MedMCQA task where generic drug names are substituted with brand names.",
        "Model accuracy on MedMCQA task with original data. (Only includes questions that overlap with the g2b dataset)",
        "Difference in MedMCQA accuracy for swapped and non-swapped datasets, highlighting the impact of G2B drug name substitution on performance.",
        "Model accuracy on MedQA (4 options) task where generic drug names are substituted with brand names.",
        "Model accuracy on MedQA (4 options) task with original data. (Only includes questions that overlap with the g2b dataset)",
        "Difference in MedMCQA accuracy for swapped and non-swapped datasets, highlighting the impact of G2B drug name substitution on performance."
    ]
}
explanation_df = pd.DataFrame(explanation_data)

df = pd.read_csv("data/csv/models_data.csv")

filter_mapping = {
    "all": "all",
    "🟒 Pre-trained": "🟒",
    "🟩 Continuously pre-trained": "🟩",
    "πŸ”Ά Fine-tuned on domain-specific data": "πŸ”Ά",
    "πŸ’¬ Chat-models (RLHF, DPO, IFT, ...)": "πŸ’¬"
}

def filter_items(df, query):
    if query == "all":
        return df
    filter_value = filter_mapping[query]
    return df[df["T"].str.contains(filter_value, na=False)]

def create_scatter_plot(df, x_col, y_col, title, x_title, y_title):
    fig = px.scatter(df, x=x_col, y=y_col, color='Model', title=title)
    fig.add_trace(
        go.Scatter(
            x=[0, 100],
            y=[0, 100],
            mode="lines",
            name="y=x line",
            line=dict(color='black', dash='dash')
        )
    )
    
    fig.update_layout(
        xaxis_title=x_title,
        yaxis_title=y_title,
        xaxis=dict(range=[0, 100]),
        yaxis=dict(range=[0, 100]),
        legend_title_text='Model'
    )
    fig.update_traces(marker=dict(size=10), selector=dict(mode='markers'))
    return fig

with gr.Blocks(css="custom.css") as demo:
    with gr.Column():
        gr.Markdown(
            """<div style="text-align: center;"><h1> <span style='color: #FFC43A;'>🐰 RABBITS:</span> <span style='color: #FFC43A;'>R</span>obust <span style='color: #FFC43A;'>A</span>ssessment of <span style='color: #FFC43A;'>B</span>iomedical <span style='color: #FFC43A;'>B</span>enchmarks <span style='color: #FFC43A;'>I</span>nvolving drug
<span style='color: #FFC43A;'>T</span>erm <span style='color: #FFC43A;'>S</span>ubstitutions for Language Models <span style='color: #FFC43A;'></span></h1></div>"""
        )
    with gr.Row():
        gr.Markdown("""  """)    
    with gr.Row():       
        gr.Markdown(
            """<div style="text-align: center;">
            <p class='markdown-text'>Robust language models are crucial in the medical domain and the RABBITS project tests the robustness of LLMs by evaluating their handling of synonyms, specifically brand and generic drug names. We assessed 16 open-source language models from Hugging Face using systematic synonym substitution on MedQA and MedMCQA tasks. Our results show a consistent decline in performance across all model sizes, highlighting challenges in synonym comprehension. Additionally, we discovered significant dataset contamination by identifying overlaps between MedQA, MedMCQA test sets, and the Dolma 1.6 dataset using an 8-gram analysis. This highlights the need to improve model robustness and address contamination in open-source datasets.</p>
            </div>"""
        )
    with gr.Row():
        gr.Markdown("""  """)
    with gr.Row():
        gr.Image(value="workflow-1-2.svg",  width=200, height=450)
        gr.Image(value="workflow-3-4.svg",  width=200, height=450)

    with gr.Row():
        gr.Markdown("""  """)

    with gr.Row():
            gr.Dataframe(
                value=explanation_df,
                headers="keys",
                datatype=["str", "str"],
                interactive=False,
                label="Explanation of Scores"
            )    

    with gr.Row():
        gr.Markdown("""  """)

    with gr.Tabs(elem_classes="tab-buttons"):
        with gr.TabItem("πŸ” Evaluation table"):
            with gr.Column():
                with gr.Accordion("➑️ Filter by Column", open=False):
                    shown_columns = gr.CheckboxGroup(
                        choices=df.columns.tolist(),
                        value=df.columns.tolist(),
                        label="Select Columns",
                        interactive=True,
                    )
                with gr.Row():
                    search_bar = gr.Textbox(
                        placeholder="πŸ” Search for your model and press ENTER...",
                        show_label=False,
                        elem_id="search-bar"
                    )
                    filter_columns = gr.Radio(
                        label="⏚ Filter model types",
                        choices=[
                            "all", 
                            "🟒 Pre-trained", 
                            "🟩 Continuously pre-trained", 
                            "πŸ”Ά Fine-tuned on domain-specific data", 
                            "πŸ’¬ Chat-models (RLHF, DPO, IFT, ...)"
                        ],
                        value="all",
                        elem_id="filter-columns",
                    )
                leaderboard_df = gr.Dataframe(
                    value=df,
                    headers="keys",
                    datatype=["html" if col == "Model" else "str" for col in df.columns],
                    interactive=False,
                    elem_id="leaderboard-table"
                )

                def update_leaderboard(search_query):
                    filtered_df = df[df["Model"].str.contains(search_query, case=False)]
                    return filtered_df

                search_bar.submit(
                    update_leaderboard,
                    inputs=search_bar,
                    outputs=leaderboard_df
                )

                def filter_update(query):
                    filtered_df = filter_items(df, query)
                    return filtered_df

                filter_columns.change(
                    filter_update,
                    inputs=filter_columns,
                    outputs=leaderboard_df
                )

                shown_columns.change(
                    lambda cols: df[cols], 
                    inputs=shown_columns, 
                    outputs=leaderboard_df
                )

        with gr.TabItem("πŸ“Š Evaluation Plots"):
            with gr.Column():
                with gr.Row():
                    scatter1 = gr.Plot(
                        value=create_scatter_plot(df, "medmcqa_orig_filtered", "medmcqa_g2b",
                                                "MedMCQA: Orig vs G2B", "medmcqa_orig_filtered", "medmcqa_g2b"),
                        elem_id="scatter1"
                    )
                    scatter2 = gr.Plot(
                        value=create_scatter_plot(df, "medqa_4options_orig_filtered", "medqa_4options_g2b",
                                                "MedQA: Orig vs G2B", "medqa_4options_orig_filtered", "medqa_4options_g2b"),
                        elem_id="scatter2"
                    )
                with gr.Row():
                    scatter3 = gr.Plot(
                        value=create_scatter_plot(df, "b4bqa", "b4b",
                                                "b4bqa vs b4b", "b4bqa", "b4b"),
                        elem_id="scatter3"
                    )

        with gr.TabItem("πŸ“ About"):
            gr.Markdown(
                """<div style="text-align: center;">
                <h2>About RABBITS LLM Leaderboard</h2>
                <p>This leaderboard ...</p>
                <p>It is designed to ...</p>
                </div>""",
                elem_classes="markdown-text"
            )

        with gr.TabItem("πŸš€ Submit Here!"):
            gr.Markdown(
                """<div style="text-align: center;">
                <h2>Submit Your Model Results</h2>
                <p>If you have new model results that you would like to add to the leaderboard, please follow the submission guidelines below:</p>
                <ul>
                    <li>COMING SOON</li>
                </ul>
                <p>COMING SOON</p>
                </div>""",
                elem_classes="markdown-text"
            )

if __name__ == "__main__":
    demo.launch()