Spaces:
AIR-Bench
/
Running on CPU Upgrade

File size: 8,494 Bytes
f766ce9
8b7a945
3b83af7
f766ce9
8b7a945
f766ce9
3b83af7
f766ce9
8b7a945
2edd122
 
 
1a2dba5
 
df659d0
 
af8395f
2edd122
 
 
 
 
 
 
f766ce9
7ff98ba
 
b80bda9
f766ce9
08fea1e
 
 
 
 
 
 
f766ce9
 
3b83af7
 
 
f766ce9
8b7a945
 
 
3b83af7
8b7a945
 
 
df659d0
9400714
f766ce9
 
8b7a945
 
3b83af7
 
 
8b7a945
 
 
1a2dba5
 
8b7a945
df659d0
 
9400714
f766ce9
8b7a945
 
3b83af7
 
8b7a945
 
 
 
 
 
 
1a2dba5
 
df659d0
8b7a945
 
 
 
df659d0
 
 
 
 
8b7a945
 
 
 
 
 
df659d0
 
9400714
bb19740
8b7a945
 
 
 
 
 
1a2dba5
 
df659d0
 
9400714
 
f766ce9
 
1e768ec
3b83af7
 
8b7a945
3d59d51
8b7a945
 
 
 
 
3d59d51
7ff98ba
 
 
 
1a2dba5
 
df659d0
 
af8395f
3d59d51
a0c2cea
8b7a945
 
 
 
 
982af90
1a2dba5
3d59d51
1a2dba5
f30cbcc
3d59d51
 
8b7a945
 
e5c7cad
8b7a945
 
 
f766ce9
8b7a945
3b83af7
f766ce9
 
3b83af7
f766ce9
cf2d912
1a2dba5
 
f766ce9
 
 
 
8b7a945
a0c2cea
 
 
 
 
1e768ec
f766ce9
8b7a945
f766ce9
 
8b7a945
f766ce9
8b7a945
f766ce9
8b7a945
 
f766ce9
 
3b83af7
 
 
 
 
 
af8395f
3b83af7
af8395f
3b83af7
1a2dba5
af8395f
3b83af7
 
 
 
 
 
 
af8395f
3b83af7
 
7ff98ba
 
08fea1e
6fb03e0
 
3b83af7
 
 
 
 
7ff98ba
df659d0
 
 
3b83af7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import json
import os.path
from collections import defaultdict
from dataclasses import dataclass
from typing import List

import pandas as pd

from src.benchmarks import get_safe_name
from src.display.utils import (
    COL_NAME_RERANKING_MODEL,
    COL_NAME_RETRIEVAL_MODEL,
    COL_NAME_RERANKING_MODEL_LINK,
    COL_NAME_RETRIEVAL_MODEL_LINK,
    COL_NAME_REVISION,
    COL_NAME_TIMESTAMP,
    COL_NAME_IS_ANONYMOUS,
    COLS_QA,
    QA_BENCHMARK_COLS,
    COLS_LONG_DOC,
    LONG_DOC_BENCHMARK_COLS,
    COL_NAME_AVG,
    COL_NAME_RANK
)

from src.display.formatting import make_clickable_model

pd.options.mode.copy_on_write = True

def calculate_mean(row):
    if pd.isna(row).any():
        return 0
    else:
        return row.mean()


@dataclass
class EvalResult:
    """
    Evaluation result of a single embedding model with a specific reranking model on benchmarks over different
    domains, languages, and datasets
    """
    eval_name: str  # name of the evaluation, [retrieval_model]_[reranking_model]_[metric]
    retrieval_model: str
    reranking_model: str
    results: list  # results on all the benchmarks stored as dict
    task: str
    metric: str
    timestamp: str = ""  # submission timestamp
    revision: str = ""
    is_anonymous: bool = False


@dataclass
class FullEvalResult:
    """
    Evaluation result of a single embedding model with a specific reranking model on benchmarks over different tasks
    """
    eval_name: str  # name of the evaluation, [retrieval_model]_[reranking_model]
    retrieval_model: str
    reranking_model: str
    retrieval_model_link: str
    reranking_model_link: str
    results: List[EvalResult]  # results on all the EvalResults over different tasks and metrics.
    timestamp: str = ""
    revision: str = ""
    is_anonymous: bool = False

    @classmethod
    def init_from_json_file(cls, json_filepath):
        """
        Initiate from the result json file for a single model.
        The json file will be written only when the status is FINISHED.
        """
        with open(json_filepath) as fp:
            model_data = json.load(fp)

        # store all the results for different metrics and tasks
        result_list = []
        retrieval_model_link = ""
        reranking_model_link = ""
        revision = ""
        for item in model_data:
            config = item.get("config", {})
            # eval results for different metrics
            results = item.get("results", [])
            retrieval_model_link = config["retrieval_model_link"]
            if config["reranking_model_link"] is None:
                reranking_model_link = ""
            else:
                reranking_model_link = config["reranking_model_link"]
            eval_result = EvalResult(
                eval_name=f"{config['retrieval_model']}_{config['reranking_model']}_{config['metric']}",
                retrieval_model=config["retrieval_model"],
                reranking_model=config["reranking_model"],
                results=results,
                task=config["task"],
                metric=config["metric"],
                timestamp=config.get("timestamp", "2024-05-12T12:24:02Z"),
                revision=config.get("revision", "3a2ba9dcad796a48a02ca1147557724e"),
                is_anonymous=config.get("is_anonymous", False)
            )
            result_list.append(eval_result)
        return cls(
            eval_name=f"{result_list[0].retrieval_model}_{result_list[0].reranking_model}",
            retrieval_model=result_list[0].retrieval_model,
            reranking_model=result_list[0].reranking_model,
            retrieval_model_link=retrieval_model_link,
            reranking_model_link=reranking_model_link,
            results=result_list,
            timestamp=result_list[0].timestamp,
            revision=result_list[0].revision,
            is_anonymous=result_list[0].is_anonymous
        )

    def to_dict(self, task='qa', metric='ndcg_at_3') -> List:
        """
        Convert the results in all the EvalResults over different tasks and metrics. The output is a list of dict compatible with the dataframe UI
        """
        results = defaultdict(dict)
        for eval_result in self.results:
            if eval_result.metric != metric:
                continue
            if eval_result.task != task:
                continue
            results[eval_result.eval_name]["eval_name"] = eval_result.eval_name
            results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] = (
                make_clickable_model(self.retrieval_model, self.retrieval_model_link))
            results[eval_result.eval_name][COL_NAME_RERANKING_MODEL] = (
                make_clickable_model(self.reranking_model, self.reranking_model_link))
            results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link
            results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
            results[eval_result.eval_name][COL_NAME_REVISION] = self.revision
            results[eval_result.eval_name][COL_NAME_TIMESTAMP] = self.timestamp
            results[eval_result.eval_name][COL_NAME_IS_ANONYMOUS] = self.is_anonymous

            # print(f'result loaded: {eval_result.eval_name}')
            for result in eval_result.results:
                # add result for each domain, language, and dataset
                domain = result["domain"]
                lang = result["lang"]
                dataset = result["dataset"]
                value = result["value"] * 100
                if dataset == 'default':
                    benchmark_name = f"{domain}_{lang}"
                else:
                    benchmark_name = f"{domain}_{lang}_{dataset}"
                results[eval_result.eval_name][get_safe_name(benchmark_name)] = value
        return [v for v in results.values()]


def get_raw_eval_results(results_path: str) -> List[FullEvalResult]:
    """
    Load the evaluation results from a json file
    """
    model_result_filepaths = []
    for root, dirs, files in os.walk(results_path):
        if len(files) == 0:
            continue

        # select the latest results
        for file in files:
            if not (file.startswith("results") and file.endswith(".json")):
                print(f'skip {file}')
                continue
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # create evaluation results
        try:
            eval_result = FullEvalResult.init_from_json_file(model_result_filepath)
        except UnicodeDecodeError as e:
            print(f"loading file failed. {model_result_filepath}")
            continue
        print(f'file loaded: {model_result_filepath}')
        eval_name = eval_result.eval_name
        eval_results[eval_name] = eval_result

    results = []
    for k, v in eval_results.items():
        try:
            v.to_dict()
            results.append(v)
        except KeyError:
            print(f"loading failed: {k}")
            continue
    return results


def get_leaderboard_df(raw_data: List[FullEvalResult], task: str, metric: str) -> pd.DataFrame:
    """
    Creates a dataframe from all the individual experiment results
    """
    cols = [COL_NAME_IS_ANONYMOUS, ]
    if task == "qa":
        cols += COLS_QA
        benchmark_cols = QA_BENCHMARK_COLS
    elif task == "long-doc":
        cols += COLS_LONG_DOC
        benchmark_cols = LONG_DOC_BENCHMARK_COLS
    else:
        raise NotImplemented
    all_data_json = []
    for v in raw_data:
        all_data_json += v.to_dict(task=task, metric=metric)
    df = pd.DataFrame.from_records(all_data_json)
    # print(f'dataframe created: {df.shape}')

    _benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))

    # calculate the average score for selected benchmarks
    df[COL_NAME_AVG] = df[list(_benchmark_cols)].apply(calculate_mean, axis=1).round(decimals=2)
    df.sort_values(by=[COL_NAME_AVG], ascending=False, inplace=True)
    df.reset_index(inplace=True, drop=True)

    _cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
    df = df[_cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df[COL_NAME_RANK] = df[COL_NAME_AVG].rank(ascending=False, method="min")

    # shorten the revision
    df[COL_NAME_REVISION] = df[COL_NAME_REVISION].str[:6]
    return df