Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
feat: implement the submission part
Browse files- app.py +53 -9
- src/about.py +5 -20
- src/populate.py +54 -32
- utils.py +16 -0
app.py
CHANGED
@@ -6,6 +6,7 @@ from src.about import (
|
|
6 |
INTRODUCTION_TEXT,
|
7 |
LLM_BENCHMARKS_TEXT,
|
8 |
TITLE,
|
|
|
9 |
)
|
10 |
from src.display.css_html_js import custom_css
|
11 |
from src.display.utils import (
|
@@ -13,13 +14,14 @@ from src.display.utils import (
|
|
13 |
LONG_DOC_BENCHMARK_COLS,
|
14 |
COLS_QA,
|
15 |
COLS_LONG_DOC,
|
|
|
16 |
TYPES,
|
17 |
AutoEvalColumnQA,
|
18 |
fields
|
19 |
)
|
20 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
21 |
-
from src.populate import get_leaderboard_df
|
22 |
-
from utils import update_table, update_metric, update_table_long_doc
|
23 |
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, metric_list
|
24 |
|
25 |
|
@@ -75,11 +77,11 @@ def update_metric_long_doc(
|
|
75 |
return update_metric(raw_data_qa, 'long_doc', metric, domains, langs, reranking_model, query)
|
76 |
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
|
85 |
demo = gr.Blocks(css=custom_css)
|
@@ -305,8 +307,50 @@ with demo:
|
|
305 |
queue=True
|
306 |
)
|
307 |
|
308 |
-
with gr.TabItem("
|
309 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
311 |
scheduler = BackgroundScheduler()
|
312 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
|
|
6 |
INTRODUCTION_TEXT,
|
7 |
LLM_BENCHMARKS_TEXT,
|
8 |
TITLE,
|
9 |
+
EVALUATION_QUEUE_TEXT
|
10 |
)
|
11 |
from src.display.css_html_js import custom_css
|
12 |
from src.display.utils import (
|
|
|
14 |
LONG_DOC_BENCHMARK_COLS,
|
15 |
COLS_QA,
|
16 |
COLS_LONG_DOC,
|
17 |
+
EVAL_COLS,
|
18 |
TYPES,
|
19 |
AutoEvalColumnQA,
|
20 |
fields
|
21 |
)
|
22 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
23 |
+
from src.populate import get_leaderboard_df, get_evaluation_queue_df
|
24 |
+
from utils import update_table, update_metric, update_table_long_doc, upload_file
|
25 |
from src.benchmarks import DOMAIN_COLS_QA, LANG_COLS_QA, DOMAIN_COLS_LONG_DOC, LANG_COLS_LONG_DOC, metric_list
|
26 |
|
27 |
|
|
|
77 |
return update_metric(raw_data_qa, 'long_doc', metric, domains, langs, reranking_model, query)
|
78 |
|
79 |
|
80 |
+
(
|
81 |
+
finished_eval_queue_df,
|
82 |
+
running_eval_queue_df,
|
83 |
+
pending_eval_queue_df,
|
84 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
85 |
|
86 |
|
87 |
demo = gr.Blocks(css=custom_css)
|
|
|
307 |
queue=True
|
308 |
)
|
309 |
|
310 |
+
with gr.TabItem("🚀Submit here!", elem_id="submit-tab-table", id=2):
|
311 |
+
with gr.Column():
|
312 |
+
with gr.Row():
|
313 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
314 |
+
with gr.Row():
|
315 |
+
with gr.Accordion(f"✅ Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
|
316 |
+
with gr.Row():
|
317 |
+
finished_eval_table = gr.components.Dataframe(
|
318 |
+
value=finished_eval_queue_df,
|
319 |
+
row_count=5,
|
320 |
+
)
|
321 |
+
with gr.Row():
|
322 |
+
with gr.Accordion(
|
323 |
+
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
324 |
+
open=False,
|
325 |
+
):
|
326 |
+
with gr.Row():
|
327 |
+
running_eval_table = gr.components.Dataframe(
|
328 |
+
value=running_eval_queue_df,
|
329 |
+
row_count=5,
|
330 |
+
)
|
331 |
+
with gr.Row():
|
332 |
+
with gr.Accordion(
|
333 |
+
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
334 |
+
open=False,
|
335 |
+
):
|
336 |
+
with gr.Row():
|
337 |
+
pending_eval_table = gr.components.Dataframe(
|
338 |
+
value=pending_eval_queue_df,
|
339 |
+
row_count=5,
|
340 |
+
)
|
341 |
+
with gr.Row():
|
342 |
+
gr.Markdown("## ✉️Submit your model here!", elem_classes="markdown-text")
|
343 |
+
# with gr.Row():
|
344 |
+
# with gr.Column():
|
345 |
+
# model_name_textbox = gr.Textbox(label="Model name")
|
346 |
+
# with gr.Column():
|
347 |
+
# model_url = gr.Textbox(label="Model URL")
|
348 |
+
file_output = gr.File()
|
349 |
+
upload_button = gr.UploadButton("Click to submit evaluation", file_count="multiple")
|
350 |
+
upload_button.upload(upload_file, upload_button, file_output)
|
351 |
+
|
352 |
+
# with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=3):
|
353 |
+
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
354 |
|
355 |
scheduler = BackgroundScheduler()
|
356 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
src/about.py
CHANGED
@@ -57,26 +57,11 @@ To reproduce our results, here is the commands you can run:
|
|
57 |
EVALUATION_QUEUE_TEXT = """
|
58 |
## Some good practices before submitting a model
|
59 |
|
60 |
-
### 1)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
|
66 |
-
```
|
67 |
-
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
|
68 |
-
|
69 |
-
Note: make sure your model is public!
|
70 |
-
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
|
71 |
-
|
72 |
-
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
|
73 |
-
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
|
74 |
-
|
75 |
-
### 3) Make sure your model has an open license!
|
76 |
-
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
|
77 |
-
|
78 |
-
### 4) Fill up your model card
|
79 |
-
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
|
80 |
|
81 |
## In case of model failure
|
82 |
If your model is displayed in the `FAILED` category, its execution stopped.
|
|
|
57 |
EVALUATION_QUEUE_TEXT = """
|
58 |
## Some good practices before submitting a model
|
59 |
|
60 |
+
### 1)
|
61 |
+
### 2)
|
62 |
+
### 3)
|
63 |
+
### 4)
|
64 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
## In case of model failure
|
67 |
If your model is displayed in the `FAILED` category, its execution stopped.
|
src/populate.py
CHANGED
@@ -38,35 +38,57 @@ def get_leaderboard_df(raw_data: List[FullEvalResult], cols: list, benchmark_col
|
|
38 |
|
39 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
40 |
"""Creates the different dataframes for the evaluation queues requests"""
|
41 |
-
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
42 |
-
all_evals = []
|
43 |
-
|
44 |
-
for entry in entries:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
67 |
-
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
68 |
-
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
69 |
-
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
70 |
-
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
71 |
-
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
40 |
"""Creates the different dataframes for the evaluation queues requests"""
|
41 |
+
# entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
42 |
+
# all_evals = []
|
43 |
+
#
|
44 |
+
# for entry in entries:
|
45 |
+
# if ".json" in entry:
|
46 |
+
# file_path = os.path.join(save_path, entry)
|
47 |
+
# with open(file_path) as fp:
|
48 |
+
# data = json.load(fp)
|
49 |
+
#
|
50 |
+
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
51 |
+
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
52 |
+
#
|
53 |
+
# all_evals.append(data)
|
54 |
+
# elif ".md" not in entry:
|
55 |
+
# # this is a folder
|
56 |
+
# sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
|
57 |
+
# for sub_entry in sub_entries:
|
58 |
+
# file_path = os.path.join(save_path, entry, sub_entry)
|
59 |
+
# with open(file_path) as fp:
|
60 |
+
# data = json.load(fp)
|
61 |
+
#
|
62 |
+
# data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
|
63 |
+
# data[EvalQueueColumn.revision.name] = data.get("revision", "main")
|
64 |
+
# all_evals.append(data)
|
65 |
+
#
|
66 |
+
# pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
67 |
+
# running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
68 |
+
# finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
|
69 |
+
# df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
70 |
+
# df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
71 |
+
# df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
72 |
+
cols = ["Retrieval Model", "Submitted Time", "Status"]
|
73 |
+
df_finished = pd.DataFrame(
|
74 |
+
{
|
75 |
+
"Retrieval Model": ["bge-m3", "jina-embeddings-v2"],
|
76 |
+
"Submitted Time": ["2024-05-01 12:34:20", "2024-05-02 12:34:20"],
|
77 |
+
"Status": ["FINISHED", "FINISHED"]
|
78 |
+
}
|
79 |
+
)
|
80 |
+
df_running = pd.DataFrame(
|
81 |
+
{
|
82 |
+
"Retrieval Model": ["bge-m3", "jina-embeddings-v2"],
|
83 |
+
"Submitted Time": ["2024-05-01 12:34:20", "2024-05-02 12:34:20"],
|
84 |
+
"Status": ["RUNNING", "RUNNING"]
|
85 |
+
}
|
86 |
+
)
|
87 |
+
df_pending = pd.DataFrame(
|
88 |
+
{
|
89 |
+
"Retrieval Model": ["bge-m3", "jina-embeddings-v2"],
|
90 |
+
"Submitted Time": ["2024-05-01 12:34:20", "2024-05-02 12:34:20"],
|
91 |
+
"Status": ["PENDING", "PENDING"]
|
92 |
+
}
|
93 |
+
)
|
94 |
+
return df_finished, df_running, df_pending
|
utils.py
CHANGED
@@ -1,4 +1,9 @@
|
|
1 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
from src.display.utils import AutoEvalColumnQA, AutoEvalColumnLongDoc, COLS_QA, COLS_LONG_DOC, QA_BENCHMARK_COLS, LONG_DOC_BENCHMARK_COLS
|
4 |
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
|
@@ -124,3 +129,14 @@ def update_metric(
|
|
124 |
reranking_model,
|
125 |
query
|
126 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
import os
|
3 |
+
|
4 |
+
from src.display.formatting import styled_error, styled_message, styled_warning
|
5 |
+
|
6 |
+
from huggingface_hub import HfApi
|
7 |
|
8 |
from src.display.utils import AutoEvalColumnQA, AutoEvalColumnLongDoc, COLS_QA, COLS_LONG_DOC, QA_BENCHMARK_COLS, LONG_DOC_BENCHMARK_COLS
|
9 |
from src.benchmarks import BENCHMARK_COLS_QA, BENCHMARK_COLS_LONG_DOC, BenchmarksQA, BenchmarksLongDoc
|
|
|
129 |
reranking_model,
|
130 |
query
|
131 |
)
|
132 |
+
|
133 |
+
|
134 |
+
def upload_file(files):
|
135 |
+
file_paths = [file.name for file in files]
|
136 |
+
print(f"file uploaded: {file_paths}")
|
137 |
+
# for fp in file_paths:
|
138 |
+
# # upload the file
|
139 |
+
# print(file_paths)
|
140 |
+
# HfApi(token="").upload_file(...)
|
141 |
+
# os.remove(fp)
|
142 |
+
return file_paths
|