import os from src.display.formatting import model_hyperlink from huggingface_hub import HfApi # Info to change for your repository # ---------------------------------- TOKEN = os.environ.get("TOKEN", "") # A read/write token for your org OWNER = "AIR-Bench" # "nan" # Change to your org - don't forget to create a results and request dataset, with the correct format! # ---------------------------------- REPO_ID = f"{OWNER}/leaderboard" # repo for storing the evaluation results RESULTS_REPO = f"{OWNER}/eval_results" # repo for submitting the evaluation SEARCH_RESULTS_REPO = f"{OWNER}/search_results" # If you setup a cache later, just change HF_HOME CACHE_PATH = os.getenv("HF_HOME", ".") # Local caches EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval_results") API = HfApi(token=TOKEN) BM25_LINK = model_hyperlink("https://github.com/castorini/pyserini", "BM25") BENCHMARK_VERSION_LIST = [ "AIR-Bench_24.04", "AIR-Bench_24.05", ] LATEST_BENCHMARK_VERSION = BENCHMARK_VERSION_LIST[0] DEFAULT_METRIC_QA = "ndcg_at_10" DEFAULT_METRIC_LONG_DOC = "recall_at_10" METRIC_LIST = [ "ndcg_at_1", "ndcg_at_3", "ndcg_at_5", "ndcg_at_10", "ndcg_at_100", "ndcg_at_1000", "map_at_1", "map_at_3", "map_at_5", "map_at_10", "map_at_100", "map_at_1000", "recall_at_1", "recall_at_3", "recall_at_5", "recall_at_10", "recall_at_100", "recall_at_1000", "precision_at_1", "precision_at_3", "precision_at_5", "precision_at_10", "precision_at_100", "precision_at_1000", "mrr_at_1", "mrr_at_3", "mrr_at_5", "mrr_at_10", "mrr_at_100", "mrr_at_1000" ] COL_NAME_AVG = "Average ⬆️" COL_NAME_RETRIEVAL_MODEL = "Retrieval Method" COL_NAME_RERANKING_MODEL = "Reranking Model" COL_NAME_RETRIEVAL_MODEL_LINK = "Retrieval Model LINK" COL_NAME_RERANKING_MODEL_LINK = "Reranking Model LINK" COL_NAME_RANK = "Rank 🏆" COL_NAME_REVISION = "Revision" COL_NAME_TIMESTAMP = "Submission Date" COL_NAME_IS_ANONYMOUS = "Anonymous Submission"