import gradio as gr from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import torch import theme from huggingface_hub import from_pretrained_keras from tensorflow.keras.applications import EfficientNetB0 import tensorflow as tf from tensorflow import keras from PIL import Image theme = theme.Theme() import os import sys sys.path.append('../..') #langchain from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.prompts import PromptTemplate from langchain.chains import RetrievalQA from langchain.prompts import ChatPromptTemplate from langchain.schema import StrOutputParser from langchain.schema.runnable import Runnable from langchain.schema.runnable.config import RunnableConfig from langchain.chains import ( LLMChain, ConversationalRetrievalChain) from langchain.vectorstores import Chroma from langchain.memory import ConversationBufferMemory from langchain.chains import LLMChain from langchain.prompts.prompt import PromptTemplate from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder from langchain.document_loaders import PyPDFDirectoryLoader from langchain.output_parsers import PydanticOutputParser from langchain_community.llms import HuggingFaceHub from langchain_community.document_loaders import WebBaseLoader from pydantic.v1 import BaseModel, Field import shutil custom_title = "Green Greta" # Cell 2: ChatBot Model loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling"]) data=loader.load() # split documents text_splitter = RecursiveCharacterTextSplitter( chunk_size=1024, chunk_overlap=150, length_function=len ) docs = text_splitter.split_documents(data) # define embedding embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small') # create vector database from data persist_directory = 'docs/chroma/' # Remove old database files if any shutil.rmtree(persist_directory, ignore_errors=True) vectordb = Chroma.from_documents( documents=docs, embedding=embeddings, persist_directory=persist_directory ) # define retriever retriever = vectordb.as_retriever(search_kwargs={"k": 2}, search_type="mmr") class FinalAnswer(BaseModel): question: str = Field() answer: str = Field() # Assuming you have a parser for the FinalAnswer class parser = PydanticOutputParser(pydantic_object=FinalAnswer) template = """ Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish / Has sido diseñado y creado por el Grupo 1 del Máster en Data Science & Big Data de la promoción 2023/2024 de la Universidad Complutense de Madrid. Este grupo está fromado por Rocío, María Guillermo, Alejandra, Paloma y Álvaro / Use the following pieces of context to answer the question / If the question is English answer in English / If the question is Spanish answer in Spanish / Do not mention the word context when you answer a question / Answer the question fully and provide as much relevant detail as possible. Do not cut your response short / Context: {context} User: {question} {format_instructions} """ # Create the chat prompt templates sys_prompt = SystemMessagePromptTemplate.from_template(template) qa_prompt = ChatPromptTemplate( messages=[ sys_prompt, HumanMessagePromptTemplate.from_template("{question}")], partial_variables={"format_instructions": parser.get_format_instructions()} ) llm = HuggingFaceHub( repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", task="text-generation", model_kwargs={ "max_new_tokens": 2000, "top_k": 30, "temperature": 0.1, "repetition_penalty": 1.03 }, ) qa_chain = ConversationalRetrievalChain.from_llm( llm = llm, memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output'), retriever = retriever, verbose = True, combine_docs_chain_kwargs={'prompt': qa_prompt}, get_chat_history = lambda h : h, rephrase_question = False, output_key = 'output', ) import numpy as np import soundfile as sf # Load ASR pipeline transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-small") def chat_interface(question, audio_input=None, history=None): if audio_input is not None: # Function to transcribe the audio input def transcribe(audio): # Normalize audio audio /= np.max(np.abs(audio)) # Write the audio to a temporary file temp_audio_file = "temp_audio.wav" sf.write(temp_audio_file, audio, 16000) # Assuming 16kHz sample rate # Transcribe the audio from the temporary file return transcriber(temp_audio_file)[0]['transcription'] # Transcribe the audio input question = transcribe(audio_input) return question # Original chatbot logic result = qa_chain.invoke({'question': question}) output_string = result['output'] # Find the index of the last occurrence of "answer": in the string answer_index = output_string.rfind('"answer":') # Extract the substring starting from the "answer": index answer_part = output_string[answer_index + len('"answer":'):].strip() # Find the next occurrence of a double quote to get the start of the answer value quote_index = answer_part.find('"') # Extract the answer value between double quotes answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)] return answer_value chatbot_gradio_app = gr.Interface( fn=chat_interface, inputs=[ gr.Textbox(lines=3, label="Type your message here"), gr.Audio(label="Record your voice", type='numpy') # Change type to "microphone" ], outputs=gr.Textbox(label="Bot's Response"), ) chatbot_gradio_app.launch()