multimodalart's picture
Update app.py
787396a
raw
history blame
5.57 kB
import torch
import os
import gradio as gr
from PIL import Image
from diffusers import (
DiffusionPipeline,
AutoencoderKL,
StableDiffusionControlNetPipeline,
ControlNetModel,
StableDiffusionLatentUpscalePipeline,
DPMSolverMultistepScheduler, # <-- Added import
EulerDiscreteScheduler # <-- Added import
)
from share_btn import community_icon_html, loading_icon_html, share_js
from illusion_style import css
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
# Initialize both pipelines
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
#init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster")#, torch_dtype=torch.float16)
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
BASE_MODEL,
controlnet=controlnet,
vae=vae,
safety_checker=None,
#torch_dtype=torch.float16,
).to("cuda")
#model_id = "stabilityai/sd-x2-latent-upscaler"
#upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
#upscaler.to("cuda")
# Sampler map
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}
def center_crop_resize(img, output_size=(512, 512)):
width, height = img.size
# Calculate dimensions to crop to the center
new_dimension = min(width, height)
left = (width - new_dimension)/2
top = (height - new_dimension)/2
right = (width + new_dimension)/2
bottom = (height + new_dimension)/2
# Crop and resize
img = img.crop((left, top, right, bottom))
img = img.resize(output_size)
return img
# Inference function
def inference(
control_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float = 8.0,
controlnet_conditioning_scale: float = 1,
seed: int = -1,
sampler = "DPM++ Karras SDE",
progress = gr.Progress(track_tqdm=True)
):
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
# Generate the initial image
#init_image = init_pipe(prompt).images[0]
# Rest of your existing code
control_image = center_crop_resize(control_image)
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
out = main_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=control_image,
#control_image=control_image,
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator,
#strength=strength,
num_inference_steps=30,
#output_type="latent"
).images[0]
return out, gr.update(visible=True)
with gr.Blocks(css=css) as app:
gr.Markdown(
'''
<center><h1>Illusion Diffusion πŸŒ€</h1></span>
<span font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span>
</center>
A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)
This project works by using [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: MrUgleh (https://twitter.com/MrUgleh) for discovering the workflow :)
'''
)
with gr.Row():
with gr.Column():
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", info="ControlNet conditioning scale")
gr.Examples(examples=["checkers.png", "pattern.png", "spiral.jpeg"], inputs=control_image)
prompt = gr.Textbox(label="Prompt", elem_id="prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality", elem_id="negative_prompt")
with gr.Accordion(label="Advanced Options", open=False):
#strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Illusion Diffusion Output", elem_id="output")
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
run_btn.click(
inference,
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, seed, sampler],
outputs=[result_image, share_button]
)
share_button.click(None, [], [], _js=share_js)
app.queue(max_size=20)
if __name__ == "__main__":
app.launch()