Spaces:
Runtime error
Runtime error
Update app.py (#2)
Browse files- Update app.py (a91007977f3f198b4c04e58e1f27fe3456eb5e38)
Co-authored-by: Peter Lin <[email protected]>
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
5 |
import spaces
|
6 |
|
7 |
|
@@ -9,10 +10,10 @@ import spaces
|
|
9 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
10 |
repo = "ByteDance/SDXL-Lightning"
|
11 |
checkpoints = {
|
12 |
-
"1-Step" : ["sdxl_lightning_1step_unet_x0.
|
13 |
-
"2-Step" : ["sdxl_lightning_2step_unet.
|
14 |
-
"4-Step" : ["sdxl_lightning_4step_unet.
|
15 |
-
"8-Step" : ["sdxl_lightning_8step_unet.
|
16 |
}
|
17 |
|
18 |
|
@@ -35,7 +36,7 @@ def generate_image(prompt, ckpt):
|
|
35 |
# Ensure sampler uses "trailing" timesteps.
|
36 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
37 |
|
38 |
-
pipe.unet.load_state_dict(
|
39 |
image = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0).images[0]
|
40 |
return image
|
41 |
|
|
|
2 |
import torch
|
3 |
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
+
from safetensors.torch import load_file
|
6 |
import spaces
|
7 |
|
8 |
|
|
|
10 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
11 |
repo = "ByteDance/SDXL-Lightning"
|
12 |
checkpoints = {
|
13 |
+
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
|
14 |
+
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
|
15 |
+
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
|
16 |
+
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
|
17 |
}
|
18 |
|
19 |
|
|
|
36 |
# Ensure sampler uses "trailing" timesteps.
|
37 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
38 |
|
39 |
+
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda"))
|
40 |
image = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0).images[0]
|
41 |
return image
|
42 |
|