Spaces:
No application file
No application file
Create APP
Browse files
APP
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install gradio --quiet
|
2 |
+
!pip install xformer --quiet
|
3 |
+
!pip install chromadb --quiet
|
4 |
+
!pip install langchain --quiet
|
5 |
+
!pip install accelerate --quiet
|
6 |
+
!pip install transformers --quiet
|
7 |
+
!pip install bitsandbytes --quiet
|
8 |
+
!pip install unstructured --quiet
|
9 |
+
!pip install sentence-transformers --quiet
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
from textwrap import fill
|
15 |
+
from IPython.display import Markdown, display
|
16 |
+
|
17 |
+
from langchain.prompts.chat import (
|
18 |
+
ChatPromptTemplate,
|
19 |
+
HumanMessagePromptTemplate,
|
20 |
+
SystemMessagePromptTemplate,
|
21 |
+
)
|
22 |
+
|
23 |
+
from langchain import PromptTemplate
|
24 |
+
from langchain import HuggingFacePipeline
|
25 |
+
|
26 |
+
from langchain.vectorstores import Chroma
|
27 |
+
from langchain.schema import AIMessage, HumanMessage
|
28 |
+
from langchain.memory import ConversationBufferMemory
|
29 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
30 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
31 |
+
from langchain.document_loaders import UnstructuredMarkdownLoader, UnstructuredURLLoader
|
32 |
+
from langchain.chains import LLMChain, SimpleSequentialChain, RetrievalQA, ConversationalRetrievalChain
|
33 |
+
|
34 |
+
from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
|
35 |
+
|
36 |
+
import warnings
|
37 |
+
warnings.filterwarnings('ignore')
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
|
42 |
+
|
43 |
+
quantization_config = BitsAndBytesConfig(
|
44 |
+
load_in_4bit=True,
|
45 |
+
bnb_4bit_compute_dtype=torch.float16,
|
46 |
+
bnb_4bit_quant_type="nf4",
|
47 |
+
bnb_4bit_use_double_quant=True,
|
48 |
+
)
|
49 |
+
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
|
51 |
+
tokenizer.pad_token = tokenizer.eos_token
|
52 |
+
|
53 |
+
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
MODEL_NAME, torch_dtype=torch.float16,
|
55 |
+
trust_remote_code=True,
|
56 |
+
device_map="auto",
|
57 |
+
quantization_config=quantization_config
|
58 |
+
)
|
59 |
+
|
60 |
+
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
|
61 |
+
generation_config.max_new_tokens = 1024
|
62 |
+
generation_config.temperature = 0.001
|
63 |
+
generation_config.top_p = 0.95
|
64 |
+
generation_config.do_sample = True
|
65 |
+
generation_config.repetition_penalty = 1.15
|
66 |
+
|
67 |
+
pipeline = pipeline(
|
68 |
+
"text-generation",
|
69 |
+
model=model,
|
70 |
+
tokenizer=tokenizer,
|
71 |
+
return_full_text=True,
|
72 |
+
generation_config=generation_config,
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
llm = HuggingFacePipeline(
|
77 |
+
pipeline=pipeline,
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
embeddings = HuggingFaceEmbeddings(
|
82 |
+
model_name="thenlper/gte-large",
|
83 |
+
model_kwargs={"device": "cuda"},
|
84 |
+
encode_kwargs={"normalize_embeddings": True},
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
urls = [
|
89 |
+
"https://www.expansion.com/mercados/cotizaciones/valores/telefonica_M.TEF.html ",
|
90 |
+
"https://www.expansion.com/mercados/cotizaciones/valores/bbva_M.BBVA.html ",
|
91 |
+
"https://www.expansion.com/mercados/cotizaciones/valores/iberdrola_M.IBE.html",
|
92 |
+
"https://www.expansion.com/mercados/cotizaciones/valores/santander_M.SAN.html",
|
93 |
+
"https://www.expansion.com/mercados/cotizaciones/valores/ferrovial_M.FER.html",
|
94 |
+
"https://www.expansion.com/mercados/cotizaciones/valores/enagas_M.ENG.html",
|
95 |
+
"https://www.euroland.com/SiteFiles/market/search.asp?GUID=B8D60F4600CAF1479E480C0BA6CE775E&ViewPageNumber=1&ViewAllStockSelected=False&Operation=selection&SortWinLoser=False&SortDirection=&ColumnToSort=&ClickedWinLoser=&ClickedMarkCap=&NameSearch=&UpperLevel=&LowerLevel=&RegionalIndustry=&RegionalListName=&RegionalListID=&RegionalIndexName=&CorporateSites=False&SharesPerPage=50",
|
96 |
+
"https://www.expansion.com/mercados/cotizaciones/indices/ibex35_I.IB.html",
|
97 |
+
"https://es.investing.com/equities/telefonica-cash-flow",
|
98 |
+
"https://es.investing.com/equities/grupo-ferrovial-cash-flow",
|
99 |
+
"https://es.investing.com/equities/bbva-cash-flow",
|
100 |
+
"https://es.investing.com/equities/banco-santander-cash-flow",
|
101 |
+
"https://es.investing.com/equities/iberdrola-cash-flow",
|
102 |
+
"https://es.investing.com/equities/enagas-cash-flow",
|
103 |
+
"https://es.investing.com/equities/enagas-ratios",
|
104 |
+
"https://es.investing.com/equities/telefonica-ratios",
|
105 |
+
"https://es.investing.com/equities/grupo-ferrovial-ratios",
|
106 |
+
"https://es.investing.com/equities/bbva-ratios",
|
107 |
+
"https://es.investing.com/equities/banco-santander-ratios",
|
108 |
+
"https://es.investing.com/equities/iberdrola-ratios"
|
109 |
+
|
110 |
+
]
|
111 |
+
|
112 |
+
loader = UnstructuredURLLoader(urls=urls)
|
113 |
+
documents = loader.load()
|
114 |
+
|
115 |
+
len(documents)
|
116 |
+
|
117 |
+
|
118 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
119 |
+
texts_chunks = text_splitter.split_documents(documents)
|
120 |
+
|
121 |
+
len(texts_chunks)
|
122 |
+
# output: 21
|
123 |
+
|
124 |
+
template = """
|
125 |
+
[INST] <>
|
126 |
+
Actúa como un bot financiero experto en el análsis de valores cotizados en el IBEX-35
|
127 |
+
<>
|
128 |
+
|
129 |
+
{context}
|
130 |
+
|
131 |
+
{question} [/INST]
|
132 |
+
"""
|
133 |
+
|
134 |
+
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
135 |
+
|
136 |
+
qa_chain = RetrievalQA.from_chain_type(
|
137 |
+
llm=llm,
|
138 |
+
chain_type="stuff",
|
139 |
+
retriever=db.as_retriever(search_kwargs={"k": 2}),
|
140 |
+
return_source_documents=True,
|
141 |
+
chain_type_kwargs={"prompt": prompt},
|
142 |
+
)
|
143 |
+
|
144 |
+
query = "¿Cuál es el precio de la acción de BBVA hoy?"
|
145 |
+
result_ = qa_chain(
|
146 |
+
query
|
147 |
+
)
|
148 |
+
result = result_["result"].strip()
|
149 |
+
|
150 |
+
|
151 |
+
display(Markdown(f"<b>{query}</b>"))
|
152 |
+
display(Markdown(f"<p>{result}</p>"))
|
153 |
+
|
154 |
+
|
155 |
+
query = "Haz un análisis técnico de BBVA para el año 2022"
|
156 |
+
result_ = qa_chain(
|
157 |
+
query
|
158 |
+
)
|
159 |
+
result = result_["result"].strip()
|
160 |
+
|
161 |
+
|
162 |
+
display(Markdown(f"<b>{query}</b>"))
|
163 |
+
display(Markdown(f"<p>{result}</p>"))
|
164 |
+
|
165 |
+
result_["source_documents"]
|
166 |
+
|
167 |
+
custom_template = """You are finance AI Assistant Given the
|
168 |
+
following conversation and a follow up question, rephrase the follow up question
|
169 |
+
to be a standalone question. At the end of standalone question add this
|
170 |
+
'Answer the question in English language.' If you do not know the answer reply with 'I am sorry, I dont have enough information'.
|
171 |
+
Chat History:
|
172 |
+
{chat_history}
|
173 |
+
Follow Up Input: {question}
|
174 |
+
Standalone question:
|
175 |
+
"""
|
176 |
+
|
177 |
+
CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)
|
178 |
+
|
179 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
180 |
+
|
181 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
182 |
+
llm=llm,
|
183 |
+
retriever=db.as_retriever(search_kwargs={"k": 2}),
|
184 |
+
memory=memory,
|
185 |
+
condense_question_prompt=CUSTOM_QUESTION_PROMPT,
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
query = "Haz un análisis técnico definiendo todos los ratios de BBVA para el año 2021"
|
190 |
+
result_ = qa_chain({"question": query})
|
191 |
+
result = result_["answer"].strip()
|
192 |
+
|
193 |
+
display(Markdown(f"<b>{query}</b>"))
|
194 |
+
display(Markdown(f"<p>{result}</p>"))
|
195 |
+
|
196 |
+
|
197 |
+
query = "¿Cuánto han crecido las ventas de Iberdrola en los últimos cinco años?"
|
198 |
+
result_ = qa_chain({"question": query})
|
199 |
+
result = result_["answer"].strip()
|
200 |
+
|
201 |
+
display(Markdown(f"<b>{query}</b>"))
|
202 |
+
display(Markdown(f"<p>{result}</p>"))
|
203 |
+
|
204 |
+
|
205 |
+
query = "¿Cuál es el precio medio de la acción de Iberdrola en 2022?"
|
206 |
+
result_ = qa_chain({"question": query})
|
207 |
+
result = result_["answer"].strip()
|
208 |
+
|
209 |
+
display(Markdown(f"<b>{query}</b>"))
|
210 |
+
display(Markdown(f"<p>{result}</p>"))
|
211 |
+
|
212 |
+
def querying(query, history):
|
213 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
214 |
+
|
215 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
216 |
+
llm=llm,
|
217 |
+
retriever=db.as_retriever(search_kwargs={"k": 2}),
|
218 |
+
memory=memory,
|
219 |
+
condense_question_prompt=CUSTOM_QUESTION_PROMPT,
|
220 |
+
)
|
221 |
+
|
222 |
+
result = qa_chain({"question": query})
|
223 |
+
return result["answer"].strip()
|
224 |
+
|
225 |
+
|
226 |
+
iface = gr.ChatInterface(
|
227 |
+
fn = querying,
|
228 |
+
chatbot=gr.Chatbot(height=600),
|
229 |
+
textbox=gr.Textbox(placeholder="¿Cuál es el precio de la acción de BBVA hoy?", container=False, scale=7),
|
230 |
+
title="RanitaRené",
|
231 |
+
theme="soft",
|
232 |
+
examples=["¿Cuál es el precio de la acción de BBVA hoy?",
|
233 |
+
"Haz un análisis técnico de BBVA para el año 2022"
|
234 |
+
],
|
235 |
+
|
236 |
+
|
237 |
+
cache_examples=True,
|
238 |
+
retry_btn="Repetir",
|
239 |
+
undo_btn="Deshacer",
|
240 |
+
clear_btn="Borrar",
|
241 |
+
submit_btn="Enviar"
|
242 |
+
|
243 |
+
)
|
244 |
+
|
245 |
+
iface.launch(share=True)
|