APR20 commited on
Commit
22917a2
1 Parent(s): d4df7e7

Create APP

Browse files
Files changed (1) hide show
  1. APP +245 -0
APP ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !pip install gradio --quiet
2
+ !pip install xformer --quiet
3
+ !pip install chromadb --quiet
4
+ !pip install langchain --quiet
5
+ !pip install accelerate --quiet
6
+ !pip install transformers --quiet
7
+ !pip install bitsandbytes --quiet
8
+ !pip install unstructured --quiet
9
+ !pip install sentence-transformers --quiet
10
+
11
+ import torch
12
+ import gradio as gr
13
+
14
+ from textwrap import fill
15
+ from IPython.display import Markdown, display
16
+
17
+ from langchain.prompts.chat import (
18
+ ChatPromptTemplate,
19
+ HumanMessagePromptTemplate,
20
+ SystemMessagePromptTemplate,
21
+ )
22
+
23
+ from langchain import PromptTemplate
24
+ from langchain import HuggingFacePipeline
25
+
26
+ from langchain.vectorstores import Chroma
27
+ from langchain.schema import AIMessage, HumanMessage
28
+ from langchain.memory import ConversationBufferMemory
29
+ from langchain.embeddings import HuggingFaceEmbeddings
30
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
31
+ from langchain.document_loaders import UnstructuredMarkdownLoader, UnstructuredURLLoader
32
+ from langchain.chains import LLMChain, SimpleSequentialChain, RetrievalQA, ConversationalRetrievalChain
33
+
34
+ from transformers import BitsAndBytesConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline
35
+
36
+ import warnings
37
+ warnings.filterwarnings('ignore')
38
+
39
+
40
+
41
+ MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.1"
42
+
43
+ quantization_config = BitsAndBytesConfig(
44
+ load_in_4bit=True,
45
+ bnb_4bit_compute_dtype=torch.float16,
46
+ bnb_4bit_quant_type="nf4",
47
+ bnb_4bit_use_double_quant=True,
48
+ )
49
+
50
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
51
+ tokenizer.pad_token = tokenizer.eos_token
52
+
53
+ model = AutoModelForCausalLM.from_pretrained(
54
+ MODEL_NAME, torch_dtype=torch.float16,
55
+ trust_remote_code=True,
56
+ device_map="auto",
57
+ quantization_config=quantization_config
58
+ )
59
+
60
+ generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
61
+ generation_config.max_new_tokens = 1024
62
+ generation_config.temperature = 0.001
63
+ generation_config.top_p = 0.95
64
+ generation_config.do_sample = True
65
+ generation_config.repetition_penalty = 1.15
66
+
67
+ pipeline = pipeline(
68
+ "text-generation",
69
+ model=model,
70
+ tokenizer=tokenizer,
71
+ return_full_text=True,
72
+ generation_config=generation_config,
73
+ )
74
+
75
+
76
+ llm = HuggingFacePipeline(
77
+ pipeline=pipeline,
78
+ )
79
+
80
+
81
+ embeddings = HuggingFaceEmbeddings(
82
+ model_name="thenlper/gte-large",
83
+ model_kwargs={"device": "cuda"},
84
+ encode_kwargs={"normalize_embeddings": True},
85
+
86
+
87
+
88
+ urls = [
89
+ "https://www.expansion.com/mercados/cotizaciones/valores/telefonica_M.TEF.html ",
90
+ "https://www.expansion.com/mercados/cotizaciones/valores/bbva_M.BBVA.html ",
91
+ "https://www.expansion.com/mercados/cotizaciones/valores/iberdrola_M.IBE.html",
92
+ "https://www.expansion.com/mercados/cotizaciones/valores/santander_M.SAN.html",
93
+ "https://www.expansion.com/mercados/cotizaciones/valores/ferrovial_M.FER.html",
94
+ "https://www.expansion.com/mercados/cotizaciones/valores/enagas_M.ENG.html",
95
+ "https://www.euroland.com/SiteFiles/market/search.asp?GUID=B8D60F4600CAF1479E480C0BA6CE775E&ViewPageNumber=1&ViewAllStockSelected=False&Operation=selection&SortWinLoser=False&SortDirection=&ColumnToSort=&ClickedWinLoser=&ClickedMarkCap=&NameSearch=&UpperLevel=&LowerLevel=&RegionalIndustry=&RegionalListName=&RegionalListID=&RegionalIndexName=&CorporateSites=False&SharesPerPage=50",
96
+ "https://www.expansion.com/mercados/cotizaciones/indices/ibex35_I.IB.html",
97
+ "https://es.investing.com/equities/telefonica-cash-flow",
98
+ "https://es.investing.com/equities/grupo-ferrovial-cash-flow",
99
+ "https://es.investing.com/equities/bbva-cash-flow",
100
+ "https://es.investing.com/equities/banco-santander-cash-flow",
101
+ "https://es.investing.com/equities/iberdrola-cash-flow",
102
+ "https://es.investing.com/equities/enagas-cash-flow",
103
+ "https://es.investing.com/equities/enagas-ratios",
104
+ "https://es.investing.com/equities/telefonica-ratios",
105
+ "https://es.investing.com/equities/grupo-ferrovial-ratios",
106
+ "https://es.investing.com/equities/bbva-ratios",
107
+ "https://es.investing.com/equities/banco-santander-ratios",
108
+ "https://es.investing.com/equities/iberdrola-ratios"
109
+
110
+ ]
111
+
112
+ loader = UnstructuredURLLoader(urls=urls)
113
+ documents = loader.load()
114
+
115
+ len(documents)
116
+
117
+
118
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
119
+ texts_chunks = text_splitter.split_documents(documents)
120
+
121
+ len(texts_chunks)
122
+ # output: 21
123
+
124
+ template = """
125
+ [INST] <>
126
+ Actúa como un bot financiero experto en el análsis de valores cotizados en el IBEX-35
127
+ <>
128
+
129
+ {context}
130
+
131
+ {question} [/INST]
132
+ """
133
+
134
+ prompt = PromptTemplate(template=template, input_variables=["context", "question"])
135
+
136
+ qa_chain = RetrievalQA.from_chain_type(
137
+ llm=llm,
138
+ chain_type="stuff",
139
+ retriever=db.as_retriever(search_kwargs={"k": 2}),
140
+ return_source_documents=True,
141
+ chain_type_kwargs={"prompt": prompt},
142
+ )
143
+
144
+ query = "¿Cuál es el precio de la acción de BBVA hoy?"
145
+ result_ = qa_chain(
146
+ query
147
+ )
148
+ result = result_["result"].strip()
149
+
150
+
151
+ display(Markdown(f"<b>{query}</b>"))
152
+ display(Markdown(f"<p>{result}</p>"))
153
+
154
+
155
+ query = "Haz un análisis técnico de BBVA para el año 2022"
156
+ result_ = qa_chain(
157
+ query
158
+ )
159
+ result = result_["result"].strip()
160
+
161
+
162
+ display(Markdown(f"<b>{query}</b>"))
163
+ display(Markdown(f"<p>{result}</p>"))
164
+
165
+ result_["source_documents"]
166
+
167
+ custom_template = """You are finance AI Assistant Given the
168
+ following conversation and a follow up question, rephrase the follow up question
169
+ to be a standalone question. At the end of standalone question add this
170
+ 'Answer the question in English language.' If you do not know the answer reply with 'I am sorry, I dont have enough information'.
171
+ Chat History:
172
+ {chat_history}
173
+ Follow Up Input: {question}
174
+ Standalone question:
175
+ """
176
+
177
+ CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)
178
+
179
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
180
+
181
+ qa_chain = ConversationalRetrievalChain.from_llm(
182
+ llm=llm,
183
+ retriever=db.as_retriever(search_kwargs={"k": 2}),
184
+ memory=memory,
185
+ condense_question_prompt=CUSTOM_QUESTION_PROMPT,
186
+ )
187
+
188
+
189
+ query = "Haz un análisis técnico definiendo todos los ratios de BBVA para el año 2021"
190
+ result_ = qa_chain({"question": query})
191
+ result = result_["answer"].strip()
192
+
193
+ display(Markdown(f"<b>{query}</b>"))
194
+ display(Markdown(f"<p>{result}</p>"))
195
+
196
+
197
+ query = "¿Cuánto han crecido las ventas de Iberdrola en los últimos cinco años?"
198
+ result_ = qa_chain({"question": query})
199
+ result = result_["answer"].strip()
200
+
201
+ display(Markdown(f"<b>{query}</b>"))
202
+ display(Markdown(f"<p>{result}</p>"))
203
+
204
+
205
+ query = "¿Cuál es el precio medio de la acción de Iberdrola en 2022?"
206
+ result_ = qa_chain({"question": query})
207
+ result = result_["answer"].strip()
208
+
209
+ display(Markdown(f"<b>{query}</b>"))
210
+ display(Markdown(f"<p>{result}</p>"))
211
+
212
+ def querying(query, history):
213
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
214
+
215
+ qa_chain = ConversationalRetrievalChain.from_llm(
216
+ llm=llm,
217
+ retriever=db.as_retriever(search_kwargs={"k": 2}),
218
+ memory=memory,
219
+ condense_question_prompt=CUSTOM_QUESTION_PROMPT,
220
+ )
221
+
222
+ result = qa_chain({"question": query})
223
+ return result["answer"].strip()
224
+
225
+
226
+ iface = gr.ChatInterface(
227
+ fn = querying,
228
+ chatbot=gr.Chatbot(height=600),
229
+ textbox=gr.Textbox(placeholder="¿Cuál es el precio de la acción de BBVA hoy?", container=False, scale=7),
230
+ title="RanitaRené",
231
+ theme="soft",
232
+ examples=["¿Cuál es el precio de la acción de BBVA hoy?",
233
+ "Haz un análisis técnico de BBVA para el año 2022"
234
+ ],
235
+
236
+
237
+ cache_examples=True,
238
+ retry_btn="Repetir",
239
+ undo_btn="Deshacer",
240
+ clear_btn="Borrar",
241
+ submit_btn="Enviar"
242
+
243
+ )
244
+
245
+ iface.launch(share=True)