Bart_Therapy / app.py
ASaboor's picture
Update app.py
24af938 verified
import streamlit as st
from transformers import BartTokenizer, BartForConditionalGeneration
# Replace with your Hugging Face model repository path for QnA
model_repo_path_qna = 'ASaboor/Bart_Therapy'
# Load the model and tokenizer for QnA
model_qna = BartForConditionalGeneration.from_pretrained(model_repo_path_qna)
tokenizer_qna = BartTokenizer.from_pretrained(model_repo_path_qna)
# Streamlit app layout
st.set_page_config(page_title="QnA App", page_icon=":memo:", layout="wide")
st.title("Question and Answer App")
st.write("""
This app uses a fine-tuned BART model to answer questions.
Enter your question below and click "Get Answer" to see the result.
""")
# User input for QnA
question_input = st.text_input("Enter question", placeholder="Type your question here...")
# Generate the answer
if st.button("Get Answer"):
if question_input:
with st.spinner("Generating answer..."):
try:
# Tokenize input
inputs = tokenizer_qna(question_input, return_tensors='pt', max_length=512, truncation=True)
# Generate answer
outputs = model_qna.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], max_length=150, num_beams=5, early_stopping=True)
# Decode the answer
answer = tokenizer_qna.decode(outputs[0], skip_special_tokens=True)
# Display answer
st.subheader("Answer")
st.write(answer)
except Exception as e:
st.error(f"An error occurred during QnA: {e}")
else:
st.warning("Please enter a question for QnA.")
# Optional: Add a footer or additional information
st.markdown("""
---
Made with ❤️ using [Streamlit](https://streamlit.io) and [Hugging Face Transformers](https://huggingface.co/transformers/).
""")