File size: 8,864 Bytes
3d67931 4f9c46f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
from textwrap import dedent
import edge_tts
import tempfile
from tts_voice import tts_order_voice
from english.translate import Translate
from english.split_text import sentence_split
from english.generator import generatorArticle
import random
import codecs
import torch
import librosa
from models import SynthesizerTrn
from scipy.io.wavfile import write
import utils
from mel_processing import mel_spectrogram_torch
from speaker_encoder.voice_encoder import SpeakerEncoder
from transformers import WavLMModel
language_dict = tts_order_voice
def parse_text(input):
text = generatorArticle(input).strip()
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = "<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
return text
def predict(input):
article = parse_text(input)
yield article,article
async def text_to_speech_edge(text, language_code):
voice = language_dict[language_code]
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
def tran_2_chianese(text):
translate = Translate()
sentence_str = sentence_split(text)
i = 0
result=''
length = len(sentence_str)
while(i < length):
tmp = sentence_str[i]
print('\n'+tmp)
tran = translate.translateToZh(tmp)
result = result+tmp+'\n'+tran+'\n'
i+=1
return result
def readWorldsFile(file_path):
fp = codecs.open(file_path, 'r', encoding='gb2312')
lines = fp.readlines()
worlds ,paraphrase = [],[]
for line in lines:
tmp = line.split('|')
worlds.append(tmp[0].strip())
paraphrase.append(tmp[1].strip())
fp.close()
return worlds, paraphrase
def generatorWorlds(file_path):
worlds,paraphrase = readWorldsFile(file_path)
length = len(worlds)
index = 0
worlds_text = ''
while index < 15:
num = random.randint(0,length)
worlds_text += f'{worlds[num]},【{paraphrase[num]}】\n'
index += 1
print('\n' + worlds_text)
return worlds_text
def choose_word_from_file(input):
result = generatorWorlds(input.orig_name)
return result
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt')
print("Loading FreeVC(24k)...")
hps = utils.get_hparams_from_file("configs/freevc-24.json")
freevc_24 = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).to(device)
_ = freevc_24.eval()
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None)
print("Loading WavLM for content...")
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device)
def convert(model, src, tgt):
with torch.no_grad():
# tgt
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
if model == "FreeVC" or model == "FreeVC (24kHz)":
g_tgt = smodel.embed_utterance(wav_tgt)
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
else:
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
mel_tgt = mel_spectrogram_torch(
wav_tgt,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
# src
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device)
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device)
# infer
if model == "FreeVC":
audio = freevc.infer(c, g=g_tgt)
elif model == "FreeVC-s":
audio = freevc_s.infer(c, mel=mel_tgt)
else:
audio = freevc_24.infer(c, g=g_tgt)
audio = audio[0][0].data.cpu().float().numpy()
if model == "FreeVC" or model == "FreeVC-s":
write("out.wav", hps.data.sampling_rate, audio)
else:
write("out.wav", 24000, audio)
out = "out.wav"
return out
with gr.Blocks(title="Learn English By AI", theme=gr.themes.Soft(text_size="sm")) as demo:
gr.HTML("<center>"
"<h1>OpenAI + 声音克隆:根据单词生成短文,帮助理解单词使用的语境!!</h1>"
"</center>")
with gr.Accordion("📒 相关信息", open=True):
_ = f"""OpenAI Prompt 的可选参数信息:
* 输入 10-15 个单词为宜
* prompt = '你是一个非常厉害的英语助手,请将'{'words'}'组成一篇英语文章,字数限制在100 字以内'
* Open AI 用的是限制账号,每分钟请求 3 次
* 单词文件:每个单词及解释单独成行,单词与注释同行,用 “|” 分割
"""
gr.Markdown(dedent(_))
with gr.Row():
file = gr.File()
chooseBtn = gr.Button("从文件提取或输入 -》", variant="secondary")
user_input = gr.Textbox(
max_lines=5,
lines=3,
label="单词用逗号分割:",
placeholder="10-15 words will be better",
)
with gr.Column(scale=1):
submitBtn = gr.Button("开始生成英语短文", variant="primary")
chatbot = gr.Textbox(label="英语短文:", lines = 5, max_lines=8)
chooseBtn.click(
choose_word_from_file,
inputs=[file],
outputs=[user_input],
show_progress="full",
api_name="choose_word_from_file"
)
with gr.Column(scale=3):
with gr.Row():
tran_result = gr.Textbox(label="翻译结果", lines = 5,max_lines=8,scale=2)
tran_btn = gr.Button("翻译", variant="primary")
tran_btn.click(
tran_2_chianese,
inputs=[chatbot],
outputs=[tran_result],
show_progress="full",
api_name="tran_2_chianese"
)
with gr.Column(min_width=32, scale=2):
with gr.Row():
with gr.Column():
language = gr.Dropdown(choices=list(language_dict.keys()), value="普通话 (中国大陆)-Xiaoxiao-女", label="请选择文本对应的语言及您喜欢的说话人")
tts_btn = gr.Button("生成对应的音频吧", variant="primary")
output_audio = gr.Audio(type="filepath", label="为您生成的音频", interactive=False)
tts_btn.click(text_to_speech_edge, inputs=[chatbot, language], outputs=[output_audio])
with gr.Row():
model_choice = gr.Dropdown(choices=["FreeVC", "FreeVC-s", "FreeVC (24kHz)"], value="FreeVC (24kHz)", label="Model", visible=False)
audio1 = output_audio
audio2 = gr.Audio(label="请上传您喜欢的声音进行声音克隆", type='filepath')
clone_btn = gr.Button("开始AI声音克隆吧", variant="primary")
audio_cloned = gr.Audio(label="为您生成的专属声音克隆音频", type='filepath')
clone_btn.click(convert, inputs=[model_choice, audio1, audio2], outputs=[audio_cloned])
user_input.submit(
predict,
[user_input],
[chatbot,tran_result],
show_progress="full",
)
submitBtn.click(
predict,
[user_input],
[chatbot,tran_result],
show_progress="full",
api_name="predict",
)
# submitBtn.click(reset_user_input, [], [user_input])
demo.queue().launch(show_error=True, debug=True)
|