eloukas's picture
Update summaries
4bddb96
from typing import Dict, List
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import RedirectResponse
from gr_nlp_toolkit import Pipeline
from pydantic import BaseModel, Field
app = FastAPI(
title="The Grεεk NLP API 🇬🇷",
description="State-of-the-art API for Greek NLP tasks including Greeklish to Greek conversion (G2G), Named Entity Recognition (NER), Part-of-Speech (POS) tagging, and Dependency Parsing (DP). The API is powered by the Grεεk NLP Toolkit ([https://github.com/nlpaueb/gr-nlp-toolkit/](https://github.com/nlpaueb/gr-nlp-toolkit/)), which is also available via PyPI (`pip install gr-nlp-toolkit`). ",
version="1.0.0",
contact={
"name": "Natural Language Processing Group - Athens University of Economics and Business (AUEB)",
"url": "http://nlp.cs.aueb.gr/",
"api_author": "Lefteris Loukas",
},
)
# Instantiate the Pipeline
nlp_pos_ner_dp_with_g2g = Pipeline("pos,ner,dp,g2g")
# Pydantic models for responses
class G2GOutput(BaseModel):
greek_text: str = Field(
...,
example="η θεσσαλονικη ειναι ωραια πολη",
description="Converted Greek text",
)
class NERItem(BaseModel):
token: str = Field(..., example="αργεντινη")
ner_value: str = Field(..., example="S-ORG")
class POSItem(BaseModel):
token: str = Field(..., example="μου")
upos: str = Field(..., example="PRON")
morphological_features: Dict[str, str] = Field(
...,
example={
"Case": "Gen",
"Gender": "Masc",
"Number": "Sing",
"Person": "1",
"Poss": "_",
"PronType": "Prs",
},
)
class POSResponse(BaseModel):
pos_results: List[POSItem] = Field(
...,
description="Part-of-Speech tagging information",
example=[
{
"token": "μου",
"upos": "PRON",
"morphological_features": {
"Case": "Gen",
"Gender": "Masc",
"Number": "Sing",
"Person": "1",
"Poss": "_",
"PronType": "Prs",
},
},
{
"token": "αρεσει",
"upos": "VERB",
"morphological_features": {
"Aspect": "Imp",
"Case": "_",
"Gender": "_",
"Mood": "Ind",
"Number": "Sing",
"Person": "3",
"Tense": "Pres",
"VerbForm": "Fin",
"Voice": "Act",
},
},
{
"token": "να",
"upos": "AUX",
"morphological_features": {
"Aspect": "_",
"Mood": "_",
"Number": "_",
"Person": "_",
"Tense": "_",
"VerbForm": "_",
"Voice": "_",
},
},
{
"token": "διαβαζω",
"upos": "VERB",
"morphological_features": {
"Aspect": "Imp",
"Case": "_",
"Gender": "_",
"Mood": "Ind",
"Number": "Sing",
"Person": "1",
"Tense": "Pres",
"VerbForm": "Fin",
"Voice": "Act",
},
},
{
"token": "τα",
"upos": "DET",
"morphological_features": {
"Case": "Acc",
"Definite": "Def",
"Gender": "Neut",
"Number": "Plur",
"PronType": "Art",
},
},
{
"token": "post",
"upos": "X",
"morphological_features": {"Foreign": "Yes"},
},
{
"token": "του",
"upos": "DET",
"morphological_features": {
"Case": "Gen",
"Definite": "Def",
"Gender": "Masc",
"Number": "Sing",
"PronType": "Art",
},
},
{
"token": "andrew",
"upos": "X",
"morphological_features": {"Foreign": "Yes"},
},
{
"token": "ng",
"upos": "X",
"morphological_features": {"Foreign": "Yes"},
},
{"token": "στο", "upos": "_", "morphological_features": {}},
{
"token": "twitter",
"upos": "X",
"morphological_features": {"Foreign": "Yes"},
},
{"token": ".", "upos": "PUNCT", "morphological_features": {}},
],
)
class DPItem(BaseModel):
token: str = Field(..., example="προτιμω")
head: int = Field(..., example=0)
deprel: str = Field(..., example="root")
class DPResponse(BaseModel):
dp_results: List[DPItem] = Field(
...,
description="Dependency Parsing information",
example=[
{"token": "προτιμω", "head": 0, "deprel": "root"},
{"token": "την", "head": 4, "deprel": "det"},
{"token": "πρωινη", "head": 4, "deprel": "amod"},
{"token": "πτηση", "head": 1, "deprel": "obj"},
{"token": "απο", "head": 7, "deprel": "case"},
{"token": "την", "head": 7, "deprel": "det"},
{"token": "αθηνα", "head": 4, "deprel": "nmod"},
{"token": "στη", "head": 9, "deprel": "case"},
{"token": "θεσσαλονικη", "head": 4, "deprel": "nmod"},
{"token": ".", "head": 1, "deprel": "punct"},
],
)
# API endpoints
@app.post("/g2g", response_model=G2GOutput, summary="Convert Greeklish to Greek (G2G)")
async def greeklish_to_greek(
text: str = Query(
...,
description="The Greeklish text to convert",
example="H thessaloniki einai wraia polh",
),
):
"""
The G2G (Greeklish-to-Greek) endpoint takes Greeklish text (Greek written with Latin characters) as input and transliterates it to Greek text.
"""
try:
greek_text = " ".join(
[token.text for token in nlp_pos_ner_dp_with_g2g(text).tokens]
)
return G2GOutput(greek_text=greek_text)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
class NERResponse(BaseModel):
ner_results: List[NERItem] = Field(
...,
description="Named Entity Recognition information",
example=[
{"token": "η", "ner_value": "O"},
{"token": "αργεντινη", "ner_value": "S-ORG"},
{"token": "κερδισε", "ner_value": "O"},
{"token": "το", "ner_value": "O"},
{"token": "παγκοσμιο", "ner_value": "B-EVENT"},
{"token": "κυπελλο", "ner_value": "E-EVENT"},
{"token": "το", "ner_value": "O"},
{"token": "2022", "ner_value": "S-DATE"},
],
)
# @app.post("/ner", response_model=List[NERItem], summary="Named Entity Recognition")
@app.post("/ner", response_model=NERResponse, summary="Named Entity Recognition (NER)")
async def process_ner(
text: str = Query(
...,
description="The text to process for NER",
example="Η Αργεντινή κέρδισε το Παγκόσμιο Κύπελλο το 2022",
),
):
"""
The NER endpoint takes Greek text as input and returns a list of dictionaries with the token and the NER value.
Named Entity Recognition (NER) Labels:
```python
ner_possible_labels = [
'O', 'S-GPE', 'S-ORG', 'S-CARDINAL', 'B-ORG', 'E-ORG', 'B-DATE', 'E-DATE', 'S-NORP',
'B-GPE', 'E-GPE', 'S-EVENT', 'S-DATE', 'S-PRODUCT', 'S-LOC', 'I-ORG', 'S-PERSON',
'S-ORDINAL', 'B-PERSON', 'I-PERSON', 'E-PERSON', 'B-LAW', 'I-LAW', 'E-LAW', 'B-MONEY',
'I-MONEY', 'E-MONEY', 'B-EVENT', 'I-EVENT', 'E-EVENT', 'B-FAC', 'E-FAC', 'I-DATE',
'S-PERCENT', 'B-QUANTITY', 'E-QUANTITY', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'E-WORK_OF_ART',
'I-FAC', 'S-LAW', 'S-TIME', 'B-LOC', 'E-LOC', 'I-LOC', 'S-FAC', 'B-TIME', 'E-TIME',
'S-WORK_OF_ART', 'B-PRODUCT', 'E-PRODUCT', 'B-CARDINAL', 'E-CARDINAL', 'S-MONEY',
'S-LANGUAGE', 'I-TIME', 'I-PRODUCT', 'I-GPE', 'I-QUANTITY', 'B-NORP', 'E-NORP',
'S-QUANTITY', 'B-PERCENT', 'I-PERCENT', 'E-PERCENT', 'I-CARDINAL', 'B-ORDINAL',
'I-ORDINAL', 'E-ORDINAL'
]
```
"""
try:
doc = nlp_pos_ner_dp_with_g2g(text)
# Create a list of dictionaries, each with "token" and "ner_value"
ner_list = [
{"token": token.text, "ner_value": token.ner} for token in doc.tokens
]
return {"ner_results": ner_list}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# @app.post("/pos", response_model=List[POSItem], summary="Part-of-Speech Tagging")
@app.post("/pos", response_model=POSResponse, summary="Part-of-Speech Tagging (POS)")
async def process_pos(
text: str = Query(
...,
description="The text to process for POS tagging",
example="Μου αρέσει να διαβάζω τα post του Andrew Ng στο Twitter.",
),
):
"""
The POS Tagging endpoint analyzes the input text and provides Universal POS (UPOS) tags and detailed morphological features.
It returns a list of dictionaries with "token", "upos", and "morphological_features" keys.
The "morphological_features" key contains a dictionary itself with detailed morphological features.
The UPOS and morphological features are based on the Universal Dependencies (UD) framework: [https://universaldependencies.org/u/pos/](https://universaldependencies.org/u/pos/)
Complete list of the Universal POS (UPOS) tags and morphological features:
```python
{'ADJ': ['Degree', 'Number', 'Gender', 'Case'],
'ADP': ['Number', 'Gender', 'Case'],
'ADV': ['Degree', 'Abbr'],
'AUX': ['Mood',
'Aspect',
'Tense',
'Number',
'Person',
'VerbForm',
'Voice'],
'CCONJ': [],
'DET': ['Number', 'Gender', 'PronType', 'Definite', 'Case'],
'NOUN': ['Number', 'Gender', 'Abbr', 'Case'],
'NUM': ['NumType', 'Number', 'Gender', 'Case'],
'PART': [],
'PRON': ['Number', 'Gender', 'Person', 'Poss', 'PronType', 'Case'],
'PROPN': ['Number', 'Gender', 'Case'],
'PUNCT': [],
'SCONJ': [],
'SYM': [],
'VERB': ['Mood',
'Aspect',
'Tense',
'Number',
'Gender',
'Person',
'VerbForm',
'Voice',
'Case'],
'X': ['Foreign'],
```
```python
{'Abbr': ['_', 'Yes'],
'Aspect': ['Perf', '_', 'Imp'],
'Case': ['Dat', '_', 'Acc', 'Gen', 'Nom', 'Voc'],
'Definite': ['Ind', 'Def', '_'],
'Degree': ['Cmp', 'Sup', '_'],
'Foreign': ['_', 'Yes'],
'Gender': ['Fem', 'Masc', '_', 'Neut'],
'Mood': ['Ind', '_', 'Imp'],
'NumType': ['Mult', 'Card', '_', 'Ord', 'Sets'],
'Number': ['Plur', '_', 'Sing'],
'Person': ['3', '1', '_', '2'],
'Poss': ['_', 'Yes'],
'PronType': ['Ind', 'Art', '_', 'Rel', 'Dem', 'Prs', 'Ind,Rel', 'Int'],
'Tense': ['Pres', 'Past', '_'],
'VerbForm': ['Part', 'Conv', '_', 'Inf', 'Fin'],
'Voice': ['Pass', 'Act', '_'],
```
"""
try:
doc = nlp_pos_ner_dp_with_g2g(text)
# Create a list of dictionaries, each with "token", "upos", and "morphological_features"
pos_list = [
{
"token": token.text,
"upos": token.upos,
"morphological_features": token.feats,
}
for token in doc.tokens
]
# return pos_list
return {"pos_results": pos_list}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# @app.post("/dp", response_model=List[DPItem], summary="Dependency Parsing")
@app.post("/dp", response_model=DPResponse, summary="Dependency Parsing (DP)")
async def process_dp(
text: str = Query(
...,
description="The text to process for Dependency Parsing",
example="Προτιμώ την πρωινή πτήση από την Αθήνα στη Θεσσαλονίκη",
),
):
"""
The Dependency Parsing endpoint analyzes the syntactic structure of the input text.
It provides the tokens' (syntactic) heads and dependency relations. A head value of 0 indicates the root.
More specifically, the endpoint returns a list of dictionaries with "token", "head", and "deprel" keys.
Dependency Parsing Labels:
```python
dp_possible_labels = ['obl', 'obj', 'dep', 'mark', 'case', 'flat', 'nummod', 'obl:arg', 'punct', 'cop',
'acl:relcl', 'expl', 'nsubj', 'csubj:pass', 'root', 'advmod', 'nsubj:pass', 'ccomp',
'conj', 'amod', 'xcomp', 'aux', 'appos', 'csubj', 'fixed', 'nmod', 'iobj', 'parataxis',
'orphan', 'det', 'advcl', 'vocative', 'compound', 'cc', 'discourse', 'acl', 'obl:agent']
```
"""
try:
doc = nlp_pos_ner_dp_with_g2g(text)
# Create a list of dictionaries, each with "token", "head", and "deprel"
dp_list = [
{"token": token.text, "head": token.head, "deprel": token.deprel}
for token in doc.tokens
]
return {"dp_results": dp_list}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/", include_in_schema=False)
async def root():
return RedirectResponse(url="/docs#")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app)