Spaces:
Sleeping
Sleeping
Add files
Browse files- Dockerfile +16 -0
- app.py +404 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /app
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
|
3 |
+
from fastapi import FastAPI, HTTPException, Query
|
4 |
+
from fastapi.responses import RedirectResponse
|
5 |
+
from gr_nlp_toolkit import Pipeline
|
6 |
+
from pydantic import BaseModel, Field
|
7 |
+
|
8 |
+
app = FastAPI(
|
9 |
+
title="The Grεεk NLP API 🇬🇷",
|
10 |
+
description="State-of-the-art API for Greek NLP tasks including Greeklish to Greek conversion (G2G), Named Entity Recognition (NER), Part-of-Speech (POS) tagging, and Dependency Parsing (DP). Powered by the Grεεk NLP Toolkit, available on PyPI (`pip install gr-nlp-toolkit`).",
|
11 |
+
version="1.0.0",
|
12 |
+
contact={
|
13 |
+
"name": "Natural Language Processing Group - Athens University of Economics and Business (AUEB)",
|
14 |
+
"url": "http://nlp.cs.aueb.gr/",
|
15 |
+
"api_author": "Lefteris Loukas",
|
16 |
+
},
|
17 |
+
)
|
18 |
+
|
19 |
+
# Instantiate the Pipeline
|
20 |
+
nlp_pos_ner_dp_with_g2g = Pipeline("pos,ner,dp,g2g")
|
21 |
+
|
22 |
+
|
23 |
+
# Pydantic models for responses
|
24 |
+
class G2GOutput(BaseModel):
|
25 |
+
greek_text: str = Field(
|
26 |
+
...,
|
27 |
+
example="η θεσσαλονικη ειναι ωραια πολη",
|
28 |
+
description="Converted Greek text",
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
class NERItem(BaseModel):
|
33 |
+
token: str = Field(..., example="αργεντινη")
|
34 |
+
ner_value: str = Field(..., example="S-ORG")
|
35 |
+
|
36 |
+
|
37 |
+
class POSItem(BaseModel):
|
38 |
+
token: str = Field(..., example="μου")
|
39 |
+
upos: str = Field(..., example="PRON")
|
40 |
+
morphological_features: Dict[str, str] = Field(
|
41 |
+
...,
|
42 |
+
example={
|
43 |
+
"Case": "Gen",
|
44 |
+
"Gender": "Masc",
|
45 |
+
"Number": "Sing",
|
46 |
+
"Person": "1",
|
47 |
+
"Poss": "_",
|
48 |
+
"PronType": "Prs",
|
49 |
+
},
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
class POSResponse(BaseModel):
|
54 |
+
pos_results: List[POSItem] = Field(
|
55 |
+
...,
|
56 |
+
description="Part-of-Speech tagging information",
|
57 |
+
example=[
|
58 |
+
{
|
59 |
+
"token": "μου",
|
60 |
+
"upos": "PRON",
|
61 |
+
"morphological_features": {
|
62 |
+
"Case": "Gen",
|
63 |
+
"Gender": "Masc",
|
64 |
+
"Number": "Sing",
|
65 |
+
"Person": "1",
|
66 |
+
"Poss": "_",
|
67 |
+
"PronType": "Prs",
|
68 |
+
},
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"token": "αρεσει",
|
72 |
+
"upos": "VERB",
|
73 |
+
"morphological_features": {
|
74 |
+
"Aspect": "Imp",
|
75 |
+
"Case": "_",
|
76 |
+
"Gender": "_",
|
77 |
+
"Mood": "Ind",
|
78 |
+
"Number": "Sing",
|
79 |
+
"Person": "3",
|
80 |
+
"Tense": "Pres",
|
81 |
+
"VerbForm": "Fin",
|
82 |
+
"Voice": "Act",
|
83 |
+
},
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"token": "να",
|
87 |
+
"upos": "AUX",
|
88 |
+
"morphological_features": {
|
89 |
+
"Aspect": "_",
|
90 |
+
"Mood": "_",
|
91 |
+
"Number": "_",
|
92 |
+
"Person": "_",
|
93 |
+
"Tense": "_",
|
94 |
+
"VerbForm": "_",
|
95 |
+
"Voice": "_",
|
96 |
+
},
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"token": "διαβαζω",
|
100 |
+
"upos": "VERB",
|
101 |
+
"morphological_features": {
|
102 |
+
"Aspect": "Imp",
|
103 |
+
"Case": "_",
|
104 |
+
"Gender": "_",
|
105 |
+
"Mood": "Ind",
|
106 |
+
"Number": "Sing",
|
107 |
+
"Person": "1",
|
108 |
+
"Tense": "Pres",
|
109 |
+
"VerbForm": "Fin",
|
110 |
+
"Voice": "Act",
|
111 |
+
},
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"token": "τα",
|
115 |
+
"upos": "DET",
|
116 |
+
"morphological_features": {
|
117 |
+
"Case": "Acc",
|
118 |
+
"Definite": "Def",
|
119 |
+
"Gender": "Neut",
|
120 |
+
"Number": "Plur",
|
121 |
+
"PronType": "Art",
|
122 |
+
},
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"token": "post",
|
126 |
+
"upos": "X",
|
127 |
+
"morphological_features": {"Foreign": "Yes"},
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"token": "του",
|
131 |
+
"upos": "DET",
|
132 |
+
"morphological_features": {
|
133 |
+
"Case": "Gen",
|
134 |
+
"Definite": "Def",
|
135 |
+
"Gender": "Masc",
|
136 |
+
"Number": "Sing",
|
137 |
+
"PronType": "Art",
|
138 |
+
},
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"token": "andrew",
|
142 |
+
"upos": "X",
|
143 |
+
"morphological_features": {"Foreign": "Yes"},
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"token": "ng",
|
147 |
+
"upos": "X",
|
148 |
+
"morphological_features": {"Foreign": "Yes"},
|
149 |
+
},
|
150 |
+
{"token": "στο", "upos": "_", "morphological_features": {}},
|
151 |
+
{
|
152 |
+
"token": "twitter",
|
153 |
+
"upos": "X",
|
154 |
+
"morphological_features": {"Foreign": "Yes"},
|
155 |
+
},
|
156 |
+
{"token": ".", "upos": "PUNCT", "morphological_features": {}},
|
157 |
+
],
|
158 |
+
)
|
159 |
+
|
160 |
+
|
161 |
+
class DPItem(BaseModel):
|
162 |
+
token: str = Field(..., example="προτιμω")
|
163 |
+
head: int = Field(..., example=0)
|
164 |
+
deprel: str = Field(..., example="root")
|
165 |
+
|
166 |
+
|
167 |
+
class DPResponse(BaseModel):
|
168 |
+
dp_results: List[DPItem] = Field(
|
169 |
+
...,
|
170 |
+
description="Dependency Parsing information",
|
171 |
+
example=[
|
172 |
+
{"token": "προτιμω", "head": 0, "deprel": "root"},
|
173 |
+
{"token": "την", "head": 4, "deprel": "det"},
|
174 |
+
{"token": "πρωινη", "head": 4, "deprel": "amod"},
|
175 |
+
{"token": "πτηση", "head": 1, "deprel": "obj"},
|
176 |
+
{"token": "απο", "head": 7, "deprel": "case"},
|
177 |
+
{"token": "την", "head": 7, "deprel": "det"},
|
178 |
+
{"token": "αθηνα", "head": 4, "deprel": "nmod"},
|
179 |
+
{"token": "στη", "head": 9, "deprel": "case"},
|
180 |
+
{"token": "θεσσαλονικη", "head": 4, "deprel": "nmod"},
|
181 |
+
{"token": ".", "head": 1, "deprel": "punct"},
|
182 |
+
],
|
183 |
+
)
|
184 |
+
|
185 |
+
|
186 |
+
# API endpoints
|
187 |
+
@app.post("/g2g", response_model=G2GOutput, summary="Convert Greeklish to Greek")
|
188 |
+
async def greeklish_to_greek(
|
189 |
+
text: str = Query(
|
190 |
+
...,
|
191 |
+
description="The Greeklish text to convert",
|
192 |
+
example="H thessaloniki einai wraia polh",
|
193 |
+
),
|
194 |
+
):
|
195 |
+
"""
|
196 |
+
Convert Greeklish (Greek written with Latin characters) to Greek.
|
197 |
+
|
198 |
+
This endpoint takes Greeklish text (Greek written with Latin characters) as input and returns the
|
199 |
+
transliterated Greek text.
|
200 |
+
"""
|
201 |
+
try:
|
202 |
+
greek_text = " ".join(
|
203 |
+
[token.text for token in nlp_pos_ner_dp_with_g2g(text).tokens]
|
204 |
+
)
|
205 |
+
return G2GOutput(greek_text=greek_text)
|
206 |
+
except Exception as e:
|
207 |
+
raise HTTPException(status_code=500, detail=str(e))
|
208 |
+
|
209 |
+
|
210 |
+
class NERResponse(BaseModel):
|
211 |
+
ner_results: List[NERItem] = Field(
|
212 |
+
...,
|
213 |
+
description="Named Entity Recognition information",
|
214 |
+
example=[
|
215 |
+
{"token": "η", "ner_value": "O"},
|
216 |
+
{"token": "αργεντινη", "ner_value": "S-ORG"},
|
217 |
+
{"token": "κερδισε", "ner_value": "O"},
|
218 |
+
{"token": "το", "ner_value": "O"},
|
219 |
+
{"token": "παγκοσμιο", "ner_value": "B-EVENT"},
|
220 |
+
{"token": "κυπελλο", "ner_value": "E-EVENT"},
|
221 |
+
{"token": "το", "ner_value": "O"},
|
222 |
+
{"token": "2022", "ner_value": "S-DATE"},
|
223 |
+
],
|
224 |
+
)
|
225 |
+
|
226 |
+
|
227 |
+
# @app.post("/ner", response_model=List[NERItem], summary="Named Entity Recognition")
|
228 |
+
@app.post("/ner", response_model=NERResponse, summary="Named Entity Recognition")
|
229 |
+
async def process_ner(
|
230 |
+
text: str = Query(
|
231 |
+
...,
|
232 |
+
description="The text to process for NER",
|
233 |
+
example="Η Αργεντινή κέρδισε το Παγκόσμιο Κύπελλο το 2022",
|
234 |
+
),
|
235 |
+
):
|
236 |
+
"""
|
237 |
+
The NER endpoint takes Greek text as input and returns a list of dictionaries with the token and the NER value.
|
238 |
+
|
239 |
+
Named Entity Recognition (NER) Labels:
|
240 |
+
```python
|
241 |
+
ner_possible_labels = [
|
242 |
+
'O', 'S-GPE', 'S-ORG', 'S-CARDINAL', 'B-ORG', 'E-ORG', 'B-DATE', 'E-DATE', 'S-NORP',
|
243 |
+
'B-GPE', 'E-GPE', 'S-EVENT', 'S-DATE', 'S-PRODUCT', 'S-LOC', 'I-ORG', 'S-PERSON',
|
244 |
+
'S-ORDINAL', 'B-PERSON', 'I-PERSON', 'E-PERSON', 'B-LAW', 'I-LAW', 'E-LAW', 'B-MONEY',
|
245 |
+
'I-MONEY', 'E-MONEY', 'B-EVENT', 'I-EVENT', 'E-EVENT', 'B-FAC', 'E-FAC', 'I-DATE',
|
246 |
+
'S-PERCENT', 'B-QUANTITY', 'E-QUANTITY', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'E-WORK_OF_ART',
|
247 |
+
'I-FAC', 'S-LAW', 'S-TIME', 'B-LOC', 'E-LOC', 'I-LOC', 'S-FAC', 'B-TIME', 'E-TIME',
|
248 |
+
'S-WORK_OF_ART', 'B-PRODUCT', 'E-PRODUCT', 'B-CARDINAL', 'E-CARDINAL', 'S-MONEY',
|
249 |
+
'S-LANGUAGE', 'I-TIME', 'I-PRODUCT', 'I-GPE', 'I-QUANTITY', 'B-NORP', 'E-NORP',
|
250 |
+
'S-QUANTITY', 'B-PERCENT', 'I-PERCENT', 'E-PERCENT', 'I-CARDINAL', 'B-ORDINAL',
|
251 |
+
'I-ORDINAL', 'E-ORDINAL'
|
252 |
+
]
|
253 |
+
```
|
254 |
+
"""
|
255 |
+
try:
|
256 |
+
doc = nlp_pos_ner_dp_with_g2g(text)
|
257 |
+
|
258 |
+
# Create a list of dictionaries, each with "token" and "ner_value"
|
259 |
+
ner_list = [
|
260 |
+
{"token": token.text, "ner_value": token.ner} for token in doc.tokens
|
261 |
+
]
|
262 |
+
|
263 |
+
return {"ner_results": ner_list}
|
264 |
+
|
265 |
+
except Exception as e:
|
266 |
+
raise HTTPException(status_code=500, detail=str(e))
|
267 |
+
|
268 |
+
|
269 |
+
# @app.post("/pos", response_model=List[POSItem], summary="Part-of-Speech Tagging")
|
270 |
+
@app.post("/pos", response_model=POSResponse, summary="Part-of-Speech Tagging")
|
271 |
+
async def process_pos(
|
272 |
+
text: str = Query(
|
273 |
+
...,
|
274 |
+
description="The text to process for POS tagging",
|
275 |
+
example="Μου αρέσει να διαβάζω τα post του Andrew Ng στο Twitter.",
|
276 |
+
),
|
277 |
+
):
|
278 |
+
"""
|
279 |
+
The POS Tagging endpoint analyzes the input text and provides Universal POS (UPOS) tags and detailed morphological features.
|
280 |
+
|
281 |
+
It returns a list of dictionaries with "token", "upos", and "morphological_features" keys.
|
282 |
+
The "morphological_features" key contains a dictionary itself with detailed morphological features.
|
283 |
+
|
284 |
+
The UPOS and morphological features are based on the Universal Dependencies (UD) framework: [https://universaldependencies.org/u/pos/](https://universaldependencies.org/u/pos/)
|
285 |
+
|
286 |
+
Complete list of the Universal POS (UPOS) tags and morphological features:
|
287 |
+
```python
|
288 |
+
{'ADJ': ['Degree', 'Number', 'Gender', 'Case'],
|
289 |
+
'ADP': ['Number', 'Gender', 'Case'],
|
290 |
+
'ADV': ['Degree', 'Abbr'],
|
291 |
+
'AUX': ['Mood',
|
292 |
+
'Aspect',
|
293 |
+
'Tense',
|
294 |
+
'Number',
|
295 |
+
'Person',
|
296 |
+
'VerbForm',
|
297 |
+
'Voice'],
|
298 |
+
'CCONJ': [],
|
299 |
+
'DET': ['Number', 'Gender', 'PronType', 'Definite', 'Case'],
|
300 |
+
'NOUN': ['Number', 'Gender', 'Abbr', 'Case'],
|
301 |
+
'NUM': ['NumType', 'Number', 'Gender', 'Case'],
|
302 |
+
'PART': [],
|
303 |
+
'PRON': ['Number', 'Gender', 'Person', 'Poss', 'PronType', 'Case'],
|
304 |
+
'PROPN': ['Number', 'Gender', 'Case'],
|
305 |
+
'PUNCT': [],
|
306 |
+
'SCONJ': [],
|
307 |
+
'SYM': [],
|
308 |
+
'VERB': ['Mood',
|
309 |
+
'Aspect',
|
310 |
+
'Tense',
|
311 |
+
'Number',
|
312 |
+
'Gender',
|
313 |
+
'Person',
|
314 |
+
'VerbForm',
|
315 |
+
'Voice',
|
316 |
+
'Case'],
|
317 |
+
'X': ['Foreign'],
|
318 |
+
```
|
319 |
+
|
320 |
+
```python
|
321 |
+
{'Abbr': ['_', 'Yes'],
|
322 |
+
'Aspect': ['Perf', '_', 'Imp'],
|
323 |
+
'Case': ['Dat', '_', 'Acc', 'Gen', 'Nom', 'Voc'],
|
324 |
+
'Definite': ['Ind', 'Def', '_'],
|
325 |
+
'Degree': ['Cmp', 'Sup', '_'],
|
326 |
+
'Foreign': ['_', 'Yes'],
|
327 |
+
'Gender': ['Fem', 'Masc', '_', 'Neut'],
|
328 |
+
'Mood': ['Ind', '_', 'Imp'],
|
329 |
+
'NumType': ['Mult', 'Card', '_', 'Ord', 'Sets'],
|
330 |
+
'Number': ['Plur', '_', 'Sing'],
|
331 |
+
'Person': ['3', '1', '_', '2'],
|
332 |
+
'Poss': ['_', 'Yes'],
|
333 |
+
'PronType': ['Ind', 'Art', '_', 'Rel', 'Dem', 'Prs', 'Ind,Rel', 'Int'],
|
334 |
+
'Tense': ['Pres', 'Past', '_'],
|
335 |
+
'VerbForm': ['Part', 'Conv', '_', 'Inf', 'Fin'],
|
336 |
+
'Voice': ['Pass', 'Act', '_'],
|
337 |
+
```
|
338 |
+
"""
|
339 |
+
try:
|
340 |
+
doc = nlp_pos_ner_dp_with_g2g(text)
|
341 |
+
|
342 |
+
# Create a list of dictionaries, each with "token", "upos", and "morphological_features"
|
343 |
+
pos_list = [
|
344 |
+
{
|
345 |
+
"token": token.text,
|
346 |
+
"upos": token.upos,
|
347 |
+
"morphological_features": token.feats,
|
348 |
+
}
|
349 |
+
for token in doc.tokens
|
350 |
+
]
|
351 |
+
|
352 |
+
# return pos_list
|
353 |
+
return {"pos_results": pos_list}
|
354 |
+
|
355 |
+
except Exception as e:
|
356 |
+
raise HTTPException(status_code=500, detail=str(e))
|
357 |
+
|
358 |
+
|
359 |
+
# @app.post("/dp", response_model=List[DPItem], summary="Dependency Parsing")
|
360 |
+
@app.post("/dp", response_model=DPResponse, summary="Dependency Parsing")
|
361 |
+
async def process_dp(
|
362 |
+
text: str = Query(
|
363 |
+
...,
|
364 |
+
description="The text to process for Dependency Parsing",
|
365 |
+
example="Προτιμώ την πρωινή πτήση από την Αθήνα στη Θεσσαλονίκη",
|
366 |
+
),
|
367 |
+
):
|
368 |
+
"""
|
369 |
+
The Dependency Parsing endpoint analyzes the syntactic structure of the input text.
|
370 |
+
It provides the tokens' (syntactic) heads and dependency relations. A head value of 0 indicates the root.
|
371 |
+
More specifically, the endpoint returns a list of dictionaries with "token", "head", and "deprel" keys.
|
372 |
+
|
373 |
+
Dependency Parsing Labels:
|
374 |
+
```python
|
375 |
+
dp_possible_labels = ['obl', 'obj', 'dep', 'mark', 'case', 'flat', 'nummod', 'obl:arg', 'punct', 'cop',
|
376 |
+
'acl:relcl', 'expl', 'nsubj', 'csubj:pass', 'root', 'advmod', 'nsubj:pass', 'ccomp',
|
377 |
+
'conj', 'amod', 'xcomp', 'aux', 'appos', 'csubj', 'fixed', 'nmod', 'iobj', 'parataxis',
|
378 |
+
'orphan', 'det', 'advcl', 'vocative', 'compound', 'cc', 'discourse', 'acl', 'obl:agent']
|
379 |
+
```
|
380 |
+
"""
|
381 |
+
try:
|
382 |
+
doc = nlp_pos_ner_dp_with_g2g(text)
|
383 |
+
|
384 |
+
# Create a list of dictionaries, each with "token", "head", and "deprel"
|
385 |
+
dp_list = [
|
386 |
+
{"token": token.text, "head": token.head, "deprel": token.deprel}
|
387 |
+
for token in doc.tokens
|
388 |
+
]
|
389 |
+
|
390 |
+
return {"dp_results": dp_list}
|
391 |
+
|
392 |
+
except Exception as e:
|
393 |
+
raise HTTPException(status_code=500, detail=str(e))
|
394 |
+
|
395 |
+
|
396 |
+
@app.get("/", include_in_schema=False)
|
397 |
+
async def root():
|
398 |
+
return RedirectResponse(url="/docs#")
|
399 |
+
|
400 |
+
|
401 |
+
if __name__ == "__main__":
|
402 |
+
import uvicorn
|
403 |
+
|
404 |
+
uvicorn.run(app)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.112.2
|
2 |
+
gr-nlp-toolkit
|
3 |
+
pydantic==2.8.2
|
4 |
+
uvicorn==0.30.6
|