HODACHI commited on
Commit
6c5690e
1 Parent(s): 5ab60de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -27
app.py CHANGED
@@ -1,50 +1,57 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HODACHI/EZO-Common-9B-gemma-2-it")
8
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
13
- system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
- messages = []
19
- for val in history:
20
- if val[0]:
21
- messages.append({"role": "user", "content": val[0]})
22
- if val[1]:
23
- messages.append({"role": "assistant", "content": val[1]})
24
-
25
- messages.append({"role": "user", "content": message})
26
 
27
- response = ""
 
28
 
29
- for message in client.chat_completion(
30
- messages,
31
- max_tokens=max_tokens,
32
- stream=True,
 
33
  temperature=temperature,
34
  top_p=top_p,
35
- ):
36
- token = message.choices[0].delta.content
 
 
 
 
37
 
38
- response += token
 
 
39
  yield response
40
 
41
- """
42
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
43
- """
44
  demo = gr.ChatInterface(
45
  respond,
46
  additional_inputs=[
47
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
48
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
49
  gr.Slider(
50
  minimum=0.1,
@@ -56,6 +63,5 @@ demo = gr.ChatInterface(
56
  ],
57
  )
58
 
59
-
60
  if __name__ == "__main__":
61
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
3
+ import torch
4
+ from threading import Thread
5
 
6
+ MODEL_ID = "HODACHI/EZO-Common-9B-gemma-2-it"
7
+ DTYPE = torch.bfloat16
 
 
8
 
9
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
10
+ model = AutoModelForCausalLM.from_pretrained(
11
+ MODEL_ID,
12
+ device_map="cuda",
13
+ torch_dtype=DTYPE,
14
+ )
15
 
16
  def respond(
17
  message,
18
  history: list[tuple[str, str]],
 
19
  max_tokens,
20
  temperature,
21
  top_p,
22
  ):
23
+ chat = []
24
+ for user, assistant in history:
25
+ chat.append({"role": "user", "content": user})
26
+ chat.append({"role": "assistant", "content": assistant})
27
+ chat.append({"role": "user", "content": message})
 
 
 
28
 
29
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
30
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
31
 
32
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
33
+
34
+ generation_kwargs = dict(
35
+ input_ids=inputs,
36
+ max_new_tokens=max_tokens,
37
  temperature=temperature,
38
  top_p=top_p,
39
+ do_sample=True,
40
+ streamer=streamer,
41
+ )
42
+
43
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
44
+ thread.start()
45
 
46
+ response = ""
47
+ for new_text in streamer:
48
+ response += new_text
49
  yield response
50
 
 
 
 
51
  demo = gr.ChatInterface(
52
  respond,
53
  additional_inputs=[
54
+ gr.Slider(minimum=1, maximum=2048, value=150, step=1, label="Max new tokens"),
55
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
56
  gr.Slider(
57
  minimum=0.1,
 
63
  ],
64
  )
65
 
 
66
  if __name__ == "__main__":
67
  demo.launch()