Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# This script includes codes copied directly from https://huggingface.co/spaces/TIGER-Lab/Mantis | |
""" | |
Processor class for Llava. | |
""" | |
import os | |
import json | |
from typing import List, Optional, Union, Dict | |
# from ...feature_extraction_utils import BatchFeature | |
# from ...image_utils import ImageInput | |
# from ...processing_utils import ProcessorMixin | |
# from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
# from ...utils import TensorType | |
from transformers.feature_extraction_sequence_utils import BatchFeature | |
from transformers.image_utils import ImageInput | |
from transformers.processing_utils import ProcessorMixin | |
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
from transformers.utils import TensorType | |
from transformers.processing_utils import transformers_module | |
from transformers.utils.hub import is_remote_url, download_url, cached_file, is_offline_mode | |
from transformers.utils import IMAGE_PROCESSOR_NAME | |
from PIL import Image | |
import logging | |
import torch | |
import numpy as np | |
logger = logging.getLogger(__name__) | |
class MLlavaProcessor(ProcessorMixin): | |
r""" | |
Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor. | |
[`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the | |
[`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information. | |
Args: | |
image_processor ([`CLIPImageProcessor`], *optional*): | |
The image processor is a required input. | |
tokenizer ([`LlamaTokenizerFast`], *optional*): | |
The tokenizer is a required input. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
image_processor_class = ("CLIPImageProcessor", "SiglipImageProcessor") | |
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast", "PreTrainedTokenizerFast") | |
def __init__(self, image_processor=None, tokenizer=None): | |
super().__init__(image_processor, tokenizer) | |
def preprocess_interleaved_images_and_text( | |
self, | |
text, | |
images=None, | |
): | |
""" | |
Args: | |
text (`str`, `List[str]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
text can contain <image> tokens as the placeholder for the image(s) to be inserted. | |
images (`PIL.Image.Image`, `List[PIL.Image.Image]`, `List[List[PIL.Image.Image]]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
number of channels, H and W are image height and width. | |
the number of the images should match the number of <image> tokens in the text. | |
""" | |
assert text is not None, "text cannot be None." | |
if images is not None: | |
if isinstance(images, Image.Image): | |
images = [images] | |
if isinstance(images, list) and isinstance(images[0], Image.Image): | |
if isinstance(text, str): | |
images = [images] | |
elif isinstance(text, list): | |
if len(text) != len(images): | |
raise ValueError("Invalid input text. Number of texts does not match number of images.") | |
images = [[image] for image in images] | |
if isinstance(text, str): | |
num_images = len(images[0]) | |
num_image_tokens = text.count("<image>") | |
if num_image_tokens < num_images: | |
# prepend empty image tokens to text | |
if "USER:" in text: | |
text = text.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1) | |
elif "Human:" in text: | |
text = text.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1) | |
elif "HUMAN:" in text: | |
text = text.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1) | |
else: | |
text = "<image>" * (num_images - num_image_tokens) + text | |
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.") | |
elif num_image_tokens > num_images: | |
text = text.split("<image>") | |
for i, t in enumerate(text): | |
if i < num_images: | |
text[i] = t + "<image>" | |
text = "".join(text) | |
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.") | |
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.") | |
texts = [text] | |
elif isinstance(text, list): | |
if not isinstance(text[0], str): | |
raise ValueError("Invalid input text. Each element of text must be a string.") | |
for i, t in enumerate(text): | |
num_image_tokens = t.count("<image>") | |
num_images = len(images[i]) | |
if num_image_tokens < num_images: | |
# prepend empty image tokens to text | |
if "USER:" in t: | |
t = t.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1) | |
elif "Human:" in t: | |
t = t.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1) | |
elif "HUMAN:" in t: | |
t = t.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1) | |
else: | |
t = "<image>" * (num_images - num_image_tokens) + t | |
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.") | |
elif num_image_tokens > num_images: | |
t = t.split("<image>") | |
for j, s in enumerate(t): | |
if j < num_images: | |
t[j] = s + "<image>" | |
t = "".join(t) | |
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.") | |
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.") | |
text[i] = t | |
texts = text | |
else: | |
raise ValueError("Invalid input text. text must be a string or a list of strings.") | |
assert all([t.count("<image>") == len(images_per_text) for t, images_per_text in zip(texts, images)]), "Number of <image> tokens in text does not match number of images." | |
# add image denotation in text before each <image> as "(image {i}: <image>)" | |
for i, t in enumerate(texts): | |
for j in range(len(images[i])): | |
t = t.replace("<image>", f"(image {j+1}: <Image><IMAGE></Image>)", 1) | |
t = t.replace("<IMAGE>", "<image>") | |
texts[i] = t | |
# flatten images | |
images = [image for images_per_text in images for image in images_per_text] | |
else: | |
if isinstance(text, str): | |
texts = [text] | |
elif isinstance(text, list): | |
if not isinstance(text[0], str): | |
raise ValueError("Invalid input text. Each element of text must be a string.") | |
texts = text | |
else: | |
raise ValueError("Invalid input text. text must be a string or a list of strings.") | |
return texts, images | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
images: ImageInput = None, | |
padding: Union[bool, str, PaddingStrategy] = False, | |
truncation: Union[bool, str, TruncationStrategy] = None, | |
max_length=None, | |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
add_image_ids: bool = True, | |
) -> BatchFeature: | |
""" | |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | |
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | |
of the above two methods for more information. | |
Args: | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
number of channels, H and W are image height and width. | |
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
index) among: | |
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
sequence if provided). | |
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
acceptable input length for the model if that argument is not provided. | |
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
lengths). | |
max_length (`int`, *optional*): | |
Maximum length of the returned list and optionally padding length (see above). | |
truncation (`bool`, *optional*): | |
Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
Returns: | |
[`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
""" | |
if add_image_ids: | |
text, images = self.preprocess_interleaved_images_and_text(text, images) | |
if images is not None: | |
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] # [batch_size, num_channels, height, width], e.g. [1, 3, 336, 336] | |
else: | |
pixel_values = None | |
text_inputs = self.tokenizer( | |
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length | |
) | |
# text_inputs: | |
# 1. input_ids: [batch_size, sequence_length], e.g. [1, 6] | |
# 2. attention_mask: [batch_size, sequence_length], e.g. [1, 6] | |
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values}) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |
def _right_pad_inputs_with_attention_mask(self, model_inputs: List[Dict]): | |
results = {} | |
assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs)) | |
for k in model_inputs[0].keys(): | |
if k == "pixel_values": | |
results[k] = [inputs[k] if inputs[k] is not None else None for inputs in model_inputs] | |
else: | |
results[k] = torch.cat([inputs[k] for inputs in model_inputs], dim=0) | |
return results | |
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
args = [] | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
subfolder = kwargs.pop("subfolder", "") | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
from_auto_class = kwargs.pop("_from_auto", False) | |
user_agent = {"file_type": "processor", "from_auto_class": from_auto_class} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
is_local = os.path.isdir(pretrained_model_name_or_path) | |
if os.path.isdir(pretrained_model_name_or_path): | |
processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME) | |
if os.path.isfile(pretrained_model_name_or_path): | |
resolved_processor_file = pretrained_model_name_or_path | |
is_local = True | |
elif is_remote_url(pretrained_model_name_or_path): | |
processor_file = pretrained_model_name_or_path | |
resolved_processor_file = download_url(pretrained_model_name_or_path) | |
else: | |
processor_file = IMAGE_PROCESSOR_NAME | |
try: | |
# Load from local folder or from cache or download from model Hub and cache | |
resolved_processor_file = cached_file( | |
pretrained_model_name_or_path, | |
processor_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
revision=revision, | |
subfolder=subfolder, | |
_raise_exceptions_for_missing_entries=True, | |
) | |
except EnvironmentError: | |
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to | |
# the original exception. | |
raise | |
except Exception: | |
# For any other exception, we throw a generic error. | |
raise EnvironmentError( | |
f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load" | |
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the" | |
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" | |
f" directory containing a {IMAGE_PROCESSOR_NAME} file" | |
) | |
# Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not | |
# updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict. | |
# (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception) | |
# However, for models added in the future, we won't get the expected error if this file is missing. | |
if resolved_processor_file is None: | |
image_processor_dict = {} | |
try: | |
# Load processor dict | |
with open(resolved_processor_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
image_processor_dict = json.loads(text) | |
except json.JSONDecodeError: | |
raise EnvironmentError( | |
f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file." | |
) | |
for attribute_name in cls.attributes: | |
class_name = getattr(cls, f"{attribute_name}_class") | |
if isinstance(class_name, tuple): | |
if attribute_name == "tokenizer": | |
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name) | |
use_fast = kwargs.get("use_fast", True) | |
if use_fast and classes[1] is not None: | |
attribute_class = classes[1] | |
else: | |
attribute_class = classes[0] | |
elif attribute_name == "image_processor": | |
image_processor_type = image_processor_dict.get("image_processor_type", None) | |
if image_processor_type is not None: | |
assert image_processor_type in class_name, f"Invalid image processor type: {image_processor_type}" | |
attribute_class = getattr(transformers_module, image_processor_type) | |
else: | |
attribute_class = getattr(transformers_module, class_name[0]) | |
else: | |
raise ValueError(f"Invalid attribute name: {attribute_name}") | |
else: | |
attribute_class = getattr(transformers_module, class_name) | |
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) | |
return args | |