Llama-3-EZO-VLM-1 / models /mllava /processing_llava.py
HODACHI's picture
First Commit
7742501
raw
history blame
21.5 kB
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script includes codes copied directly from https://huggingface.co/spaces/TIGER-Lab/Mantis
"""
Processor class for Llava.
"""
import os
import json
from typing import List, Optional, Union, Dict
# from ...feature_extraction_utils import BatchFeature
# from ...image_utils import ImageInput
# from ...processing_utils import ProcessorMixin
# from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
# from ...utils import TensorType
from transformers.feature_extraction_sequence_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
from transformers.processing_utils import transformers_module
from transformers.utils.hub import is_remote_url, download_url, cached_file, is_offline_mode
from transformers.utils import IMAGE_PROCESSOR_NAME
from PIL import Image
import logging
import torch
import numpy as np
logger = logging.getLogger(__name__)
class MLlavaProcessor(ProcessorMixin):
r"""
Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor.
[`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.
Args:
image_processor ([`CLIPImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = ("CLIPImageProcessor", "SiglipImageProcessor")
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast", "PreTrainedTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None):
super().__init__(image_processor, tokenizer)
def preprocess_interleaved_images_and_text(
self,
text,
images=None,
):
"""
Args:
text (`str`, `List[str]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text can contain <image> tokens as the placeholder for the image(s) to be inserted.
images (`PIL.Image.Image`, `List[PIL.Image.Image]`, `List[List[PIL.Image.Image]]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
the number of the images should match the number of <image> tokens in the text.
"""
assert text is not None, "text cannot be None."
if images is not None:
if isinstance(images, Image.Image):
images = [images]
if isinstance(images, list) and isinstance(images[0], Image.Image):
if isinstance(text, str):
images = [images]
elif isinstance(text, list):
if len(text) != len(images):
raise ValueError("Invalid input text. Number of texts does not match number of images.")
images = [[image] for image in images]
if isinstance(text, str):
num_images = len(images[0])
num_image_tokens = text.count("<image>")
if num_image_tokens < num_images:
# prepend empty image tokens to text
if "USER:" in text:
text = text.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1)
elif "Human:" in text:
text = text.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1)
elif "HUMAN:" in text:
text = text.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1)
else:
text = "<image>" * (num_images - num_image_tokens) + text
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.")
elif num_image_tokens > num_images:
text = text.split("<image>")
for i, t in enumerate(text):
if i < num_images:
text[i] = t + "<image>"
text = "".join(text)
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
texts = [text]
elif isinstance(text, list):
if not isinstance(text[0], str):
raise ValueError("Invalid input text. Each element of text must be a string.")
for i, t in enumerate(text):
num_image_tokens = t.count("<image>")
num_images = len(images[i])
if num_image_tokens < num_images:
# prepend empty image tokens to text
if "USER:" in t:
t = t.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1)
elif "Human:" in t:
t = t.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1)
elif "HUMAN:" in t:
t = t.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1)
else:
t = "<image>" * (num_images - num_image_tokens) + t
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.")
elif num_image_tokens > num_images:
t = t.split("<image>")
for j, s in enumerate(t):
if j < num_images:
t[j] = s + "<image>"
t = "".join(t)
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
text[i] = t
texts = text
else:
raise ValueError("Invalid input text. text must be a string or a list of strings.")
assert all([t.count("<image>") == len(images_per_text) for t, images_per_text in zip(texts, images)]), "Number of <image> tokens in text does not match number of images."
# add image denotation in text before each <image> as "(image {i}: <image>)"
for i, t in enumerate(texts):
for j in range(len(images[i])):
t = t.replace("<image>", f"(image {j+1}: <Image><IMAGE></Image>)", 1)
t = t.replace("<IMAGE>", "<image>")
texts[i] = t
# flatten images
images = [image for images_per_text in images for image in images_per_text]
else:
if isinstance(text, str):
texts = [text]
elif isinstance(text, list):
if not isinstance(text[0], str):
raise ValueError("Invalid input text. Each element of text must be a string.")
texts = text
else:
raise ValueError("Invalid input text. text must be a string or a list of strings.")
return texts, images
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
add_image_ids: bool = True,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if add_image_ids:
text, images = self.preprocess_interleaved_images_and_text(text, images)
if images is not None:
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] # [batch_size, num_channels, height, width], e.g. [1, 3, 336, 336]
else:
pixel_values = None
text_inputs = self.tokenizer(
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
)
# text_inputs:
# 1. input_ids: [batch_size, sequence_length], e.g. [1, 6]
# 2. attention_mask: [batch_size, sequence_length], e.g. [1, 6]
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def _right_pad_inputs_with_attention_mask(self, model_inputs: List[Dict]):
results = {}
assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs))
for k in model_inputs[0].keys():
if k == "pixel_values":
results[k] = [inputs[k] if inputs[k] is not None else None for inputs in model_inputs]
else:
results[k] = torch.cat([inputs[k] for inputs in model_inputs], dim=0)
return results
@classmethod
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
args = []
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", "")
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {"file_type": "processor", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
if os.path.isfile(pretrained_model_name_or_path):
resolved_processor_file = pretrained_model_name_or_path
is_local = True
elif is_remote_url(pretrained_model_name_or_path):
processor_file = pretrained_model_name_or_path
resolved_processor_file = download_url(pretrained_model_name_or_path)
else:
processor_file = IMAGE_PROCESSOR_NAME
try:
# Load from local folder or from cache or download from model Hub and cache
resolved_processor_file = cached_file(
pretrained_model_name_or_path,
processor_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
user_agent=user_agent,
revision=revision,
subfolder=subfolder,
_raise_exceptions_for_missing_entries=True,
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
# the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load"
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
f" directory containing a {IMAGE_PROCESSOR_NAME} file"
)
# Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not
# updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict.
# (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception)
# However, for models added in the future, we won't get the expected error if this file is missing.
if resolved_processor_file is None:
image_processor_dict = {}
try:
# Load processor dict
with open(resolved_processor_file, "r", encoding="utf-8") as reader:
text = reader.read()
image_processor_dict = json.loads(text)
except json.JSONDecodeError:
raise EnvironmentError(
f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file."
)
for attribute_name in cls.attributes:
class_name = getattr(cls, f"{attribute_name}_class")
if isinstance(class_name, tuple):
if attribute_name == "tokenizer":
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
use_fast = kwargs.get("use_fast", True)
if use_fast and classes[1] is not None:
attribute_class = classes[1]
else:
attribute_class = classes[0]
elif attribute_name == "image_processor":
image_processor_type = image_processor_dict.get("image_processor_type", None)
if image_processor_type is not None:
assert image_processor_type in class_name, f"Invalid image processor type: {image_processor_type}"
attribute_class = getattr(transformers_module, image_processor_type)
else:
attribute_class = getattr(transformers_module, class_name[0])
else:
raise ValueError(f"Invalid attribute name: {attribute_name}")
else:
attribute_class = getattr(transformers_module, class_name)
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
return args