Spaces:
Runtime error
Runtime error
File size: 41,563 Bytes
5bd4e3a 2166f83 71472f9 2166f83 5bd4e3a 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 988da55 71472f9 2166f83 71472f9 2166f83 064cae1 8f873c3 2166f83 71472f9 e6d8c8b 8335dcb 71472f9 064cae1 71472f9 2166f83 71472f9 8f873c3 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 5bd4e3a 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 71472f9 2166f83 4969a8b 719784d 4969a8b 719784d 72619fa 28ee572 719784d 28ee572 719784d 72619fa 71472f9 13dcc8e a71c93c 13dcc8e 71472f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 |
import gradio as gr
from base64 import b64encode
import numpy
import torch
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from PIL import Image
from torch import autocast
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer, logging
import torchvision.transforms as T
torch.manual_seed(1)
# Supress some unnecessary warnings when loading the CLIPTextModel
logging.set_verbosity_error()
torch_device = "cpu"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
# Prep Scheduler
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
batch_size = 1
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 10 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(32) # Seed generator to create the inital latent noise
# Prep latents
latents = torch.randn(
(batch_size, unet.config.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma # Scaling (previous versions did latents = latents * self.scheduler.sigmas[0]
# Loop
def pil_to_latent(input_im):
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
# bath of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
#
# Our text prompt
prompt = 'A picture of a puppy'
"""We begin with tokenization:"""
# Turn the text into a sequnce of tokens:
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_input['input_ids'][0] # View the tokens
# See the individual tokens
for t in text_input['input_ids'][0][:8]: # We'll just look at the first 7 to save you from a wall of '<|endoftext|>'
print(t, tokenizer.decoder.get(int(t)))
# TODO call out that 6829 is puppy
"""We can jump straight to the final (output) embeddings like so:"""
# Grab the output embeddings
output_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
print('Shape:', output_embeddings.shape)
output_embeddings
"""We pass our tokens through the text_encoder and we magically get some numbers we can feed to the model.
How are these generated? The tokens are transformed into a set of input embeddings, which are then fed through the transformer model to get the final output embeddings.
To get these input embeddings, there are actually two steps - as revealed by inspecting `text_encoder.text_model.embeddings`:
"""
text_encoder.text_model.embeddings
"""### Token embeddings
The token is fed to the `token_embedding` to transform it into a vector. The function name `get_input_embeddings` here is misleading since these token embeddings need to be combined with the position embeddings before they are actually used as inputs to the model! Anyway, let's look at just the token embedding part first
We can look at the embedding layer:
"""
# Access the embedding layer
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
token_emb_layer # Vocab size 49408, emb_dim 768
"""And embed a token like so:"""
# Embed a token - in this case the one for 'puppy'
embedding = token_emb_layer(torch.tensor(6829, device=torch_device))
embedding.shape # 768-dim representation
"""This single token has been mapped to a 768-dimensional vector - the token embedding.
We can do the same with all of the tokens in the prompt to get all the token embeddings:
"""
token_embeddings = token_emb_layer(text_input.input_ids.to(torch_device))
print(token_embeddings.shape) # batch size 1, 77 tokens, 768 values for each
token_embeddings
"""### Positional Embeddings
Positional embeddings tell the model where in a sequence a token is. Much like the token embedding, this is a set of (optionally learnable) parameters. But now instead of dealing with ~50k tokens we just need one for each position (77 total):
"""
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
pos_emb_layer
"""We can get the positional embedding for each position:"""
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
print(position_embeddings.shape)
position_embeddings
"""### Combining token and position embeddings
Time to combine the two. How do we do this? Just add them! Other approaches are possible but for this model this is how it is done.
Combining them in this way gives us the final input embeddings ready to feed through the transformer model:
"""
# And combining them we get the final input embeddings
input_embeddings = token_embeddings + position_embeddings
print(input_embeddings.shape)
input_embeddings
"""We can check that these are the same as the result we'd get from `text_encoder.text_model.embeddings`:"""
# The following combines all the above steps (but doesn't let us fiddle with them!)
text_encoder.text_model.embeddings(text_input.input_ids.to(torch_device))
"""### Feeding these through the transformer model
![transformer diagram](https://github.com/johnowhitaker/tglcourse/raw/main/images/text_encoder_noborder.png)
We want to mess with these input embeddings (specifically the token embeddings) before we send them through the rest of the model, but first we should check that we know how to do that. I read the code of the text_encoders `forward` method, and based on that the code for the `forward` method of the text_model that the text_encoder wraps. To inspect it yourself, type `??text_encoder.text_model.forward` and you'll get the function info and source code - a useful debugging trick!
Anyway, based on that we can copy in the bits we need to get the so-called 'last hidden state' and thus generate our final embeddings:
"""
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
out_embs_test = get_output_embeds(input_embeddings) # Feed through the model with our new function
print(out_embs_test.shape) # Check the output shape
out_embs_test # Inspect the output
"""Note that these match the `output_embeddings` we saw near the start - we've figured out how to split up that one step ("get the text embeddings") into multiple sub-steps ready for us to modify.
Now that we have this process in place, we can replace the input embedding of a token with a new one of our choice - which in our final use-case will be something we learn. To demonstrate the concept though, let's replace the input embedding for 'puppy' in the prompt we've been playing with with the embedding for token 2368, get a new set of output embeddings based on this, and use these to generate an image to see what we get:
"""
prompt = 'A picture of a puppy'
# Tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
# The new embedding. In this case just the input embedding of token 2368...
replacement_token_embedding = text_encoder.get_input_embeddings()(torch.tensor(2368, device=torch_device))
# Insert this into the token embeddings (
token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
print(modified_output_embeddings.shape)
modified_output_embeddings
"""The first few are the same, the last aren't. Everything at and after the position of the token we're replacing will be affected.
If all went well, we should see something other than a puppy when we use these to generate an image. And sure enough, we do!
"""
#Generating an image with these modified embeddings
def generate_with_embs(text_embeddings):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 30 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(32) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
#Generating an image with these modified embeddings
def generate_with_embs_seed(text_embeddings, seed, max_length):
"""
Args:
text_embeddings:
seed:
max_length:
Returns:
"""
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 30 # Number of denoising steps
guidance_scale = 7.5 # Scale for classifier-free guidance
generator = torch.manual_seed(32) # Seed generator to create the inital latent noise
batch_size = 1
# max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
generate_with_embs(modified_output_embeddings)
"""Suprise! Now you know what token 2368 means ;)
**What can we do with this?** Why did we go to all of this trouble? Well, we'll see a more compelling use-case shortly but the tl;dr is that once we can access and modify the token embeddings we can do tricks like replacing them with something else. In the example we just did, that was just another token embedding from the model's vocabulary, equivalent to just editing the prompt. But we can also mix tokens - for example, here's a half-puppy-half-skunk:
"""
# In case you're wondering how to get the token for a word, or the embedding for a token:
prompt = 'skunk'
print('tokenizer(prompt):', tokenizer(prompt))
print('token_emb_layer([token_id]) shape:', token_emb_layer(torch.tensor([8797], device=torch_device)).shape)
prompt = 'A picture of a puppy'
# Tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
# The new embedding. Which is now a mixture of the token embeddings for 'puppy' and 'skunk'
puppy_token_embedding = token_emb_layer(torch.tensor(6829, device=torch_device))
skunk_token_embedding = token_emb_layer(torch.tensor(42194, device=torch_device))
replacement_token_embedding = 0.5*puppy_token_embedding + 0.5*skunk_token_embedding
# Insert this into the token embeddings (
token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# Generate an image with these
generate_with_embs(modified_output_embeddings)
"""### Textual Inversion
OK, so we can slip in a modified token embedding, and use this to generate an image. We used the token embedding for 'cat' in the above example, but what if instead could 'learn' a new token embedding for a specific concept? This is the idea behind 'Textual Inversion', in which a few example images are used to create a new token embedding:
![Overview image from the blog post](https://textual-inversion.github.io/static/images/training/training.JPG)
_Diagram from the [textual inversion blog post](https://textual-inversion.github.io/static/images/training/training.JPG) - note it doesn't show the positional embeddings step for simplicity_
We won't cover how this training works, but we can try loading one of these new 'concepts' from the [community-created SD concepts library](https://huggingface.co/sd-concepts-library) and see how it fits in with our example above. I'll use https://huggingface.co/sd-concepts-library/birb-style since it was the first one I made :) Download the learned_embeds.bin file from there and upload the file to wherever this notebook is before running this next cell:
"""
birb_embed = torch.load('learned_embeds.bin')
birb_embed.keys(), birb_embed['<birb-style>'].shape
"""We get a dictionary with a key (the special placeholder I used, <birb-style>) and the corresponding token embedding. As in the previous example, let's replace the 'puppy' token embedding with this and see what happens:"""
prompt = 'A mouse in the style of puppy'
# Tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
# The new embedding - our special birb word
replacement_token_embedding = birb_embed['<birb-style>'].to(torch_device)
# Insert this into the token embeddings
token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
generate_with_embs(modified_output_embeddings)
"""The token for 'puppy' was replaced with one that captures a particular style of painting, but it could just as easily represent a specific object or class of objects.
Again, there is [a nice inference notebook ](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) from hf to make it easy to use the different concepts, that properly handles using the names in prompts ("A \<cat-toy> in the style of \<birb-style>") without worrying about all this manual stuff. The goal of this notebook is to pull back the curtain a bit so you know what is going on behind the scenes :)
## Messing with Embeddings
Besides just replacing the token embedding of a single word, there are various other tricks we can try. For example, what if we create a 'chimera' by averaging the embeddings of two different prompts?
"""
# Embed two prompts
text_input1 = tokenizer(["A mouse"], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_input2 = tokenizer(["A leopard"], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings1 = text_encoder(text_input1.input_ids.to(torch_device))[0]
text_embeddings2 = text_encoder(text_input2.input_ids.to(torch_device))[0]
# Mix them together
mix_factor = 0.35
mixed_embeddings = (text_embeddings1*mix_factor + \
text_embeddings2*(1-mix_factor))
# Generate!
generate_with_embs(mixed_embeddings)
"""## The UNET and CFG
Now it's time we looked at the actual diffusion model. This is typically a Unet that takes in the noisy latents (x) and predicts the noise. We use a conditional model that also takes in the timestep (t) and our text embedding (aka encoder_hidden_states) as conditioning. Feeding all of these into the model looks like this:
`noise_pred = unet(latents, t, encoder_hidden_states=text_embeddings)["sample"]`
We can try it out and see what the output looks like:
"""
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# What is our timestep
t = scheduler.timesteps[0]
sigma = scheduler.sigmas[0]
# A noisy latent
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Text embedding
text_input = tokenizer(['A macaw'], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
# Run this through the unet to predict the noise residual
with torch.no_grad():
noise_pred = unet(latents, t, encoder_hidden_states=text_embeddings)["sample"]
latents.shape, noise_pred.shape # We get preds in the same shape as the input
"""Given a set of noisy latents, the model predicts the noise component. We can remove this noise from the noisy latents to see what the output image looks like (`latents_x0 = latents - sigma * noise_pred`). And we can add most of the noise back to this predicted output to get the (slightly less noisy hopefully) input for the next diffusion step. To visualize this let's generate another image, saving both the predicted output (x0) and the next step (xt-1) after every step:"""
prompt = 'Oil painting of an otter in a top hat'
height = 512
width = 512
num_inference_steps = 50
guidance_scale = 8
generator = torch.manual_seed(32)
batch_size = 1
# Make a folder to store results
#!rm -rf steps/
#!mkdir -p steps/
# Prep text
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# Get the predicted x0:
# latents_x0 = latents - sigma * noise_pred # Calculating ourselves
scheduler_step = scheduler.step(noise_pred, t, latents)
latents_x0 = scheduler_step.pred_original_sample # Using the scheduler (Diffusers 0.4 and above)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler_step.prev_sample
# To PIL Images
im_t0 = latents_to_pil(latents_x0)[0]
im_next = latents_to_pil(latents)[0]
# Combine the two images and save for later viewing
im = Image.new('RGB', (1024, 512))
im.paste(im_next, (0, 0))
im.paste(im_t0, (512, 0))
im.save(f'steps/{i:04}.jpeg')
# Make and show the progress video (change width to 1024 for full res)
#!ffmpeg -v 1 -y -f image2 -framerate 12 -i steps/%04d.jpeg -c:v libx264 -preset slow -qp 18 -pix_fmt yuv420p out.mp4
#mp4 = open('out.mp4','rb').read()
#data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
#HTML("""
#<video width=600 controls>
# <source src="%s" type="video/mp4">
#</video>
#""" % data_url)
#"""The version on the right shows the predicted 'final output' (x0) at each step, and this is what is usually used for progress videos etc. The version on the left is the 'next step'. I found it interesteing to compare the two - watching the progress videos only you'd think drastic changes are happening expecially at early stages, but since the changes made per-step are relatively small the actual process is much more gradual.
# Guidance
def blue_loss(images):
# How far are the blue channel values to 0.9:
error = torch.abs(images[:,2] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel
return error
def orange_loss(images):
"""
Calculate the mean absolute error between the RGB values of the images and the target orange color.
Parameters:
- images (torch.Tensor): A batch of images with shape (batch_size, channels, height, width).
The images are assumed to be in RGB format.
Returns:
- torch.Tensor: The mean absolute error for the orange color.
"""
# Define the target RGB values for the color orange
target_orange = torch.tensor([255/255, 200/255, 0/255]).view(1, 3, 1, 1).to(images.device) # (R, G, B)
# Normalize images to [0, 1] range if not already normalized
images = images / 255.0 if images.max() > 1.0 else images
# Calculate the mean absolute error between the RGB values and the target orange values
error = torch.abs(images - target_orange).mean()
return error
"""During each update step, we find the gradient of the loss with respect to the current noisy latents, and tweak them in the direction that reduces this loss as well as performing the normal update step:"""
prompt = 'A campfire (oil on canvas)' #@param
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 50 #@param # Number of denoising steps
guidance_scale = 8 #@param # Scale for classifier-free guidance
generator = torch.manual_seed(32) # Seed generator to create the inital latent noise
batch_size = 1
orange_loss_scale = 200 #@param
# Prep text
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
with torch.no_grad():
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
# And the uncond. input as before:
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i%5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = blue_loss(denoised_images) * orange_loss_scale
# Occasionally print it out
if i%10==0:
print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
latents_to_pil(latents)[0]
prompt = 'A mouse in the style of puppy'
# Tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_input
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
# The new embedding - our special birb word
replacement_token_embedding = birb_embed['<birb-style>'].to(torch_device)
# Insert this into the token embeddings
token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
generate_with_embs(modified_output_embeddings)
text_input, input_ids,token_embeddings
def generate_loss(modified_output_embeddings, seed, max_length):
# prompt = 'A campfire (oil on canvas)' #@param
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 50 #@param # Number of denoising steps
guidance_scale = 8 #@param # Scale for classifier-free guidance
generator = torch.manual_seed(32) # Seed generator to create the initial latent noise
batch_size = 1
blue_loss_scale = 200 #@param
# Prep text
# text_input = tokenizer([""] * batch_size, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
#input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
#token_embeddings = token_emb_layer(input_ids)
# The new embedding - our special birb word
#replacement_token_embedding = birb_embed['<birb-style>'].to(torch_device)
# Insert this into the token embeddings
#indices = torch.where(input_ids[0] == 6829)[0]
#token_embeddings[0, indices] = replacement_token_embedding.expand_as(token_embeddings[0, indices])
# Combine with pos embs
#input_embeddings = token_embeddings + position_embeddings
# Pass the modified embeddings to the text encoder
#with torch.no_grad():
# text_embeddings = text_encoder(inputs_embeds=input_embeddings)[0]
# And the uncond. input as before:
# max_length = input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
# Ensure both embeddings have the same shape
if uncond_embeddings.shape != modified_output_embeddings.shape:
raise ValueError(f"Shape mismatch: uncond_embeddings {uncond_embeddings.shape} vs modified_output_embeddings {modified_output_embeddings.shape}")
text_embeddings = torch.cat([uncond_embeddings, modified_output_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i % 5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = orange_loss(denoised_images) * blue_loss_scale
# Occasionally print it out
if i % 10 == 0:
print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma ** 2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
# Convert the final latents to an image and display it
image = latents_to_pil(latents)[0]
image.show()
return image
def generate_loss_style(prompt, style_embed, style_seed):
# Tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer(input_ids)
if isinstance(style_embed, dict):
style_embed = style_embed['<gartic-phone>']
# The new embedding - our special birb word
replacement_token_embedding = style_embed.to(torch_device)
# Assuming token_embeddings has shape [batch_size, seq_length, embedding_dim]
replacement_token_embedding = replacement_token_embedding[:768] # Adjust the size
replacement_token_embedding = replacement_token_embedding.unsqueeze(0) # Make it [1, 768] if necessary
indices = torch.where(input_ids[0] == 6829)[0] # Extract indices where the condition is True
print(f"indices: {indices}") # Debug print
for index in indices:
print(f"index: {index}") # Debug print
token_embeddings[0, index] = replacement_token_embedding.to(torch_device) # Update each index
# Insert this into the token embeddings
# token_embeddings[0, torch.where(input_ids[0]==6829)] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
max_length = text_input.input_ids.shape[-1]
return generate_loss(modified_output_embeddings, style_seed,max_length)
def generate_embed_style(prompt, learned_style, seed):
# prompt = 'A campfire (oil on canvas)' #@param
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
num_inference_steps = 50 #@param # Number of denoising steps
guidance_scale = 8 #@param # Scale for classifier-free guidance
generator = torch.manual_seed(32) # Seed generator to create the initial latent noise
batch_size = 1
blue_loss_scale = 200 #@param
if isinstance(learned_style, dict):
learned_style = learned_style['<gartic-phone>']
# Prep text
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = text_encoder.get_input_embeddings()(input_ids)
# The new embedding - our special birb word
replacement_token_embedding = learned_style.to(torch_device)
replacement_token_embedding = replacement_token_embedding[:768] # Adjust the size
replacement_token_embedding = replacement_token_embedding.unsqueeze(0) # Make it [1, 768] if necessary
# Insert this into the token embeddings
indices = torch.where(input_ids[0] == 6829)[0]
for index in indices:
token_embeddings[0, index] = replacement_token_embedding.to(torch_device)
# Combine with pos embs
position_ids = torch.arange(token_embeddings.shape[1], dtype=torch.long, device=torch_device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
#position_embeddings = text_encoder.get_position_embeddings()(position_ids)
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
max_length = text_input.input_ids.shape[-1]
emb_seed = generate_with_embs_seed(modified_output_embeddings, seed, max_length)
#generate_loss_details = generate_loss(modified_output_embeddings, seed, max_length)
return emb_seed
# And generate an , generateimage with this:
def generate_image_from_prompt(text_in, style_in):
prompt = text_in
STYLE_LIST = ['learned_embeds_gartic-phone_style.bin', 'learned_embeds_hawaiian-shirt_style.bin', 'learned_embeds_phone01_style.bin', 'learned_embeds_style-spdmn_style.bin', 'learned_embedssd_yvmqznrm_style.bin']
#learned_embeds = [learned_embeds_gartic-phone.bin,learned_embeds_libraryhawaiian-shirt.bin, learned_embeds_phone0.bin1,learned_embeds_style-spdmn.bin,learned_embedssd_yvmqznrm.bin]
STYLE_SEEDS = [128, 64, 128, 64, 128]
print(text_in)
print(style_in)
style_file = style_in + '_style.bin'
idx = STYLE_LIST.index(style_file)
print(style_file)
print(idx)
style_seed = STYLE_SEEDS[idx]
style_dict = torch.load(style_file)
style_embed = [v for v in style_dict.values()]
generated_image = generate_embed_style(prompt,style_embed[0], style_seed)
generate_loss_details = (generate_loss_style(prompt, birb_embed, style_seed))
#generate_loss_style(prompt, style_embed, style_seed):
#loss_generated_img = (loss_style(prompt, style_embed[0], style_seed))
return [generated_image,generate_loss_details]
# Define Interface
title = 'Stable Diffusion Art Generator'
# Add clear and concise labels and instructions
prompt_label = "Enter a prompt (e.g., 'A campfire (oil on canvas)'"
styles_label = "Select a Pretrained Style:"
instructions = "Explore creative art generation using Stable Diffusion. Enter a prompt and choose a style to get started."
demo = gr.Interface(generate_image_from_prompt,
inputs=[
gr.Textbox('A campfire (oil on canvas)', label=prompt_label),
gr.Dropdown(
['learned_embeds_gartic-phone', 'learned_embeds_hawaiian-shirt', 'learned_embeds_phone01', 'learned_embeds_style-spdmn', 'learned_embedssd_yvmqznrm'],
value="learned_embeds_gartic-phone",
label=styles_label
),
],
outputs=[
gr.Gallery(label="Generated Images", show_label=False, elem_id="gallery", columns=2, rows=2,
object_fit="contain"),
],
title=title,
description=instructions
)
demo.launch(debug=True)
|