NSFW-3B / app.py
Abhaykoul's picture
Upload folder using huggingface_hub
a78027d verified
raw
history blame
4.44 kB
import os
import json
import subprocess
from threading import Thread
import torch
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
MODEL_ID = os.environ.get("MODEL_ID")
CHAT_TEMPLATE = os.environ.get("CHAT_TEMPLATE")
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = int(os.environ.get("CONTEXT_LENGTH"))
COLOR = os.environ.get("COLOR")
EMOJI = os.environ.get("EMOJI")
DESCRIPTION = os.environ.get("DESCRIPTION")
@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
# Format history with a given chat template
if CHAT_TEMPLATE == "Auto":
stop_tokens = [tokenizer.eos_token_id]
instruction = []
for user, assistant in history:
instruction.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
instruction.append({"role": "user", "content": message})
elif CHAT_TEMPLATE == "ChatML":
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
for user, assistant in history:
instruction += '<|im_start|>user\n' + user + '\n<|im_end|>\n<|im_start|>assistant\n' + assistant
instruction += '\n<|im_start|>user\n' + message + '\n<|im_end|>\n<|im_start|>assistant\n'
elif CHAT_TEMPLATE == "Mistral Instruct":
stop_tokens = ["</s>", "[INST]", "[INST] ", "<s>", "[/INST]", "[/INST] "]
instruction = '<s>[INST] ' + system_prompt
for user, assistant in history:
instruction += user + ' [/INST] ' + assistant + '</s>[INST]'
instruction += ' ' + message + ' [/INST]'
else:
raise Exception("Incorrect chat template, select 'ChatML' or 'Mistral Instruct'")
print(instruction)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer([instruction], return_tensors="pt", padding=True, truncation=True)
input_ids, attention_mask = enc.input_ids, enc.attention_mask
if input_ids.shape[1] > CONTEXT_LENGTH:
input_ids = input_ids[:, -CONTEXT_LENGTH:]
generate_kwargs = dict(
{"input_ids": input_ids.to(device), "attention_mask": attention_mask.to(device)},
streamer=streamer,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_k=top_k,
repetition_penalty=repetition_penalty,
top_p=top_p
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for new_token in streamer:
outputs.append(new_token)
if new_token in stop_tokens:
break
yield "".join(outputs)
# Load model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
quantization_config=quantization_config,
attn_implementation="flash_attention_2",
)
# Create Gradio interface
gr.ChatInterface(
predict,
title=EMOJI + " " + MODEL_NAME,
description=DESCRIPTION,
examples=[
["Can you solve the equation 2x + 3 = 11 for x?"],
["Write an epic poem about Ancient Rome."],
["Who was the first person to walk on the Moon?"],
["Use a list comprehension to create a list of squares for numbers from 1 to 10."],
["Recommend some popular science fiction books."],
["Can you write a short story about a time-traveling detective?"]
],
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
additional_inputs=[
gr.Textbox("Perform the task to the best of your ability.", label="System prompt"),
gr.Slider(0, 1, 0.8, label="Temperature"),
gr.Slider(128, 4096, 1024, label="Max new tokens"),
gr.Slider(1, 80, 40, label="Top K sampling"),
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
gr.Slider(0, 1, 0.95, label="Top P sampling"),
],
theme=gr.themes.Soft(primary_hue=COLOR),
).queue().launch()