File size: 2,673 Bytes
c3b0ed3 fe2f983 c3b0ed3 b70e9c7 c3b0ed3 b70e9c7 c3b0ed3 b70e9c7 c3b0ed3 b70e9c7 c3b0ed3 b70e9c7 c3b0ed3 55ecee5 c3b0ed3 0136e3d c3b0ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
#!/usr/bin/env python
# coding: utf-8
# ## Using Gradio to create a simple interface.
#
# Check out the library on [github](https://github.com/gradio-app/gradio-UI) and see the [getting started](https://gradio.app/getting_started.html) page for more demos.
# We'll start with a basic function that greets an input name.
# In[1]:
# get_ipython().system('pip install -q gradio')
# Now we'll wrap this function with a Gradio interface.
# In[2]:
from transformers import pipeline
import pandas as pd
tqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-wtq")
# In[ ]:
tsqa = pipeline(task="table-question-answering", model="google/tapas-large-finetuned-sqa")
# In[ ]:
mstqa = pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wikisql")
# In[ ]:
mswtqa = pipeline(task="table-question-answering", model="microsoft/tapex-large-finetuned-wtq")
# In[6]:
# table2 = pd.read_excel("/content/Sample.xlsx").astype(str)
# table3 = table2.head(20)
# In[7]:
# table3
# In[ ]:
#t4 = table3.reset_index()
# table4
# In[9]:
query = "what is the highest delta onu rx power?"
query2 = "what is the lowest delta onu rx power?"
query3 = "what is the most frequent login id?"
query4 = "how many rows with nan values are there?"
query5 = "how many S2 values are there"
# In[11]:
# result = tsqa(table=table3, query=query5)["answer"]
# result
# In[13]:
#mstqa(table=table4, query=query1)["answer"]
# In[14]:
# mswtqa(table=table3, query=query5)["answer"]
# In[15]:
def main(filepath, query):
table5 = pd.read_excel(filepath).head(20).astype(str)
result = tsqa(table=table5, query=query)["answer"]
return result
#greet("World")
# In[16]:
import gradio as gr
iface = gr.Interface(
fn=main,
inputs=[
gr.File(type="filepath", label="Upload XLSX file"),
gr.Textbox(type="text", label="Enter text"),
],
outputs=[gr.Textbox(type="text", label="Text Input Output")],
title="TableQA Test",
description="Upload an XLSX file and/or enter text, and the processed output will be displayed.",
)
# Launch the Gradio interface
iface.launch()
# In[34]:
import os
import subprocess
# Use subprocess to execute the shell command
subprocess.run(["jupyter", "nbconvert", "--to", "script", "--format", "script", "--output", "/content/", "/content/drive/MyDrive/Colab Notebooks/NEW TableQA-GRADIO: Hello World.ipynb"])
# In[19]:
# get_ipython().system('gradio deploy')
# That's all! Go ahead and open that share link in a new tab. Check out our [getting started](https://gradio.app/getting_started.html) page for more complicated demos.
|