Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,17 @@
|
|
1 |
import streamlit as st
|
2 |
-
import logging
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
# Cache the model and tokenizer to avoid reloading it every time
|
10 |
-
|
11 |
-
def load_model():
|
12 |
model_name = "NousResearch/Llama-2-7b-chat-hf" # Replace with your actual model name
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
-
|
16 |
-
|
17 |
-
model, tokenizer = load_model()
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
formatted_prompt = f"[INST] {prompt} [/INST]" # Format the prompt according to your specification
|
22 |
-
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=300)
|
23 |
-
result = pipe(formatted_prompt)
|
24 |
-
return result[0]['generated_text']
|
25 |
|
26 |
st.title("Interact with Your Model")
|
27 |
|
@@ -30,8 +20,11 @@ user_input = st.text_area("Enter your prompt:", "")
|
|
30 |
|
31 |
if st.button("Submit"):
|
32 |
if user_input:
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
36 |
else:
|
37 |
-
st.write("Please enter a prompt.")
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
|
4 |
+
# Streamlit's cache decorator to cache the model and tokenizer loading
|
5 |
+
@st.cache(allow_output_mutation=True)
|
6 |
+
def load_pipeline():
|
|
|
|
|
|
|
|
|
7 |
model_name = "NousResearch/Llama-2-7b-chat-hf" # Replace with your actual model name
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
chat_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=300)
|
11 |
+
return chat_pipeline
|
|
|
12 |
|
13 |
+
# Initialize the pipeline
|
14 |
+
chat_pipeline = load_pipeline()
|
|
|
|
|
|
|
|
|
15 |
|
16 |
st.title("Interact with Your Model")
|
17 |
|
|
|
20 |
|
21 |
if st.button("Submit"):
|
22 |
if user_input:
|
23 |
+
try:
|
24 |
+
# Generate text based on the input
|
25 |
+
generated_text = chat_pipeline(user_input)[0]['generated_text']
|
26 |
+
st.write(generated_text)
|
27 |
+
except Exception as e:
|
28 |
+
st.error(f"Error generating text: {e}")
|
29 |
else:
|
30 |
+
st.write("Please enter a prompt.")
|