import streamlit as st import logging from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Set the logger to display only CRITICAL messages logging.basicConfig(level=logging.CRITICAL) # Cache the model and tokenizer to avoid reloading it every time @st.experimental_singleton def load_model(): model_name = "Abbeite/chest_and_physical_limitations2" # Replace with your actual model name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return model, tokenizer model, tokenizer = load_model() # Function to generate text with the model def generate_text(prompt): formatted_prompt = f"[INST] {prompt} [/INST]" # Format the prompt according to your specification pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=300) result = pipe(formatted_prompt) return result[0]['generated_text'] st.title("Interact with Your Model") # User input user_input = st.text_area("Enter your prompt:", "") if st.button("Submit"): if user_input: # Generate text based on the input generated_text = generate_text(user_input) st.write(generated_text) else: st.write("Please enter a prompt.")