Spaces:
Running
Running
File size: 1,305 Bytes
12cd07f 39fc4cb 12cd07f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import librosa
import numpy as np
import torch
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
import gradio as gr
import librosa
import numpy as np
import torch
checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
def predict(text):
if len(text.strip()) == 0:
return (16000, np.zeros(0).astype(np.int16))
inputs = processor(text=text, return_tensors="pt")
# limit input length
input_ids = inputs["input_ids"]
input_ids = input_ids[..., :model.config.max_text_positions]
speaker_embedding = np.load("cmu_us_ksp_arctic-wav-arctic_b0087.npy")
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
gr.Interface(
fn=predict,
inputs=[
gr.Text(label="Input Text"),
gr.Radio(label="Speaker", choices=[
"KSP (male)"
],
value="KSP (male)"),
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
]
).launch() |