File size: 6,169 Bytes
aacc039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4777d1a
aacc039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4777d1a
 
 
aacc039
4777d1a
aacc039
4777d1a
 
 
aacc039
 
 
 
 
4777d1a
aacc039
 
 
 
4777d1a
aacc039
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st
from streamlit_option_menu import option_menu
from tensorflow import keras
import tensorflow as tf
import numpy as np
import pandas as pd
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

if 'model' not in st.session_state:
    st.session_state.model = 'Brain Tumor Detection'
def update_radio():
    st.session_state.model =st.session_state.radio

if 'clas' not in st.session_state:
    st.session_state.clas = '2 Classes'
def update_selbox():
    st.session_state.clas =st.session_state.box

if 'check' not in st.session_state:
    st.session_state.check1 = False
def update_check():
    st.session_state.check1 =st.session_state.check

def update_photo():
    st.session_state.photo =st.session_state.image

def pred(img,radio,selbox,check):
    img = tf.keras.utils.load_img(
    img,
    grayscale=False,
    color_mode='rgb',
    target_size=(224,224),
    interpolation='nearest',
    keep_aspect_ratio=False
    )
    os.remove(st.session_state.image.name)
    img = np.array(img).reshape(-1, 224, 224, 3)
    if radio =='Alzheimer Detection':
        model = keras.models.load_model('alzheimer_99.5.h5')
        result=['Mild_Demented', 'Moderate_Demented', 'Non_Demented', 'Very_Mild_Demented']
    else:
        if selbox == '44 Classes':
            model = keras.models.load_model('44class_96.5.h5')
            result=['Astrocitoma T1','Astrocitoma T1C+','Astrocitoma T2','Carcinoma T1','Carcinoma T1C+','Carcinoma T2','Ependimoma T1','Ependimoma T1C+','Ependimoma T2','Ganglioglioma T1','Ganglioglioma T1C+',
            'Ganglioglioma T2','Germinoma T1','Germinoma T1C+','Germinoma T2','Glioblastoma T1','Glioblastoma T1C+','Glioblastoma T2','Granuloma T1','Granuloma T1C+','Granuloma T2','Meduloblastoma T1',
            'Meduloblastoma T1C+','Meduloblastoma T2','Meningioma T1','Meningioma T1C+','Meningioma T2','Neurocitoma T1','Neurocitoma T1C+','Neurocitoma T2','Oligodendroglioma T1','Oligodendroglioma T1C+',
            'Oligodendroglioma T2','Papiloma T1','Papiloma T1C+','Papiloma T2','Schwannoma T1','Schwannoma T1C+','Schwannoma T2','Tuberculoma T1','Tuberculoma T1C+','Tuberculoma T2','_NORMAL T1','_NORMAL T2']
        if selbox == '17 Classes':
            model = keras.models.load_model('17class_98.1.h5')
            result=['Glioma (Astrocitoma, Ganglioglioma, Glioblastoma, Oligodendroglioma, Ependimoma) T1','Glioma (Astrocitoma, Ganglioglioma, Glioblastoma, Oligodendroglioma, Ependimoma) T1C+','Glioma (Astrocitoma, Ganglioglioma, Glioblastoma, Oligodendroglioma, Ependimoma) T2',
            'Meningioma (de Baixo Grau, Atípico, Anaplásico, Transicional) T1','Meningioma (de Baixo Grau, Atípico, Anaplásico, Transicional) T1C+','Meningioma (de Baixo Grau, Atípico, Anaplásico, Transicional) T2','NORMAL T1','NORMAL T2','Neurocitoma (Central - Intraventricular, Extraventricular) T1','Neurocitoma (Central - Intraventricular, Extraventricular) T1C+',
            'Neurocitoma (Central - Intraventricular, Extraventricular) T2','Outros Tipos de Lesões (Abscessos, Cistos, Encefalopatias Diversas) T1','Outros Tipos de Lesões (Abscessos, Cistos, Encefalopatias Diversas) T1C+','Outros Tipos de Lesões (Abscessos, Cistos, Encefalopatias Diversas) T2','Schwannoma (Acustico, Vestibular - Trigeminal) T1',
            'Schwannoma (Acustico, Vestibular - Trigeminal) T1C+','Schwannoma (Acustico, Vestibular - Trigeminal) T2']
        if selbox == '15 Classes':
            model = keras.models.load_model('15class_99.8.h5')
            result=['Astrocitoma','Carcinoma','Ependimoma','Ganglioglioma','Germinoma','Glioblastoma','Granuloma','Meduloblastoma','Meningioma','Neurocitoma','Oligodendroglioma','Papiloma','Schwannoma','Tuberculoma','_NORMAL']
        if selbox == '2 Classes':
            model = keras.models.load_model('2calss_lagre_dataset_99.1.h5')
            result=['no', 'yes']
    pred= model.predict(img)
    if check:
        pred=pd.DataFrame({
        'class_name' : result,
        'pred_score' : pred.flatten()*100
        })
        return pred
    pred = np.argmax(pred, axis=1)
    return result[pred[0]]

def spr_sidebar():
    menu=option_menu(
        menu_title=None,
        options=['Home','About'],
        icons=['house','info-square'],
        menu_icon='cast',
        default_index=0,
        orientation='horizontal'
    )
    if menu=='Home':
        st.session_state.app_mode = 'Home'
    elif menu=='About':
        st.session_state.app_mode = 'About'
    
def home_page():
    st.session_state.check=st.session_state.check1
    st.session_state.radio=st.session_state.model
    st.session_state.box=st.session_state.clas
    if 'photo' in st.session_state:
        st.session_state.image=st.session_state.photo

    st.title('Brain Tumor Detection')
    st.session_state.image=st.file_uploader('Upload MRI Image',accept_multiple_files=False,type=['png', 'jpg','jpeg'],key="upload",on_change=update_photo)
    if st.session_state.image != None:
        st.image(st.session_state.image,width=300)
        col,col2=st.columns([2,3])
        radio=col.radio("Model",options=('Brain Tumor Detection','Alzheimer Detection'),key='radio',on_change=update_radio)
        check=col.checkbox('Show Prediction Scores',key='check',on_change=update_check)
        if radio =='Brain Tumor Detection':
            selbox=col2.selectbox("choose a number of Classes",options=('44 Classes','17 Classes' ,'15 Classes','2 Classes'),index=0,key='box',on_change=update_selbox)
        else:
            selbox=col2.radio("choose a number of Classes",options=(['4 Classes']),index=0,key='box1',on_change=update_selbox)
        
        state =col.button('Get Result')
        if state:
            f=open(st.session_state.image.name, 'wb') 
            f.write(st.session_state.image.getbuffer())
            f.close()
            
            col2.write(pred(st.session_state.image.name,radio,selbox,check))



def About_page():
    st.error("Nothing Here yet")

def main():
    spr_sidebar()        
    if st.session_state.app_mode == 'Home':
        home_page()
    if st.session_state.app_mode == 'About' :
        About_page()
# Run main()
if __name__ == '__main__':
    main()