Abrar20 commited on
Commit
052db8a
1 Parent(s): 496cc3e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +127 -0
app.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import joblib
2
+ import numpy as np
3
+ import pandas as pd
4
+ import folium
5
+ import streamlit as st
6
+ from streamlit_folium import folium_static
7
+ import warnings
8
+ warnings.filterwarnings("ignore")
9
+
10
+ # Define model paths
11
+ model_paths = {
12
+ 'Path': {
13
+ '3 hours': 'lr_3H_lat_lon.pkl',
14
+ '6 hours': 'lr_6H_lat_lon.pkl',
15
+ '9 hours': 'lr_9H_lat_lon.pkl',
16
+ '12 hours': 'lr_12H_lat_lon.pkl',
17
+ '15 hours': 'lr_15H_lat_lon.pkl',
18
+ '18 hours': 'lr_18H_lat_lon.pkl',
19
+ '21 hours': 'lr_21H_lat_lon.pkl',
20
+ '24 hours': 'lr_24H_lat_lon.pkl',
21
+ '27 hours': 'lr_27H_lat_lon.pkl',
22
+ '30 hours': 'lr_30H_lat_lon.pkl',
23
+ '33 hours': 'lr_33H_lat_lon.pkl',
24
+ '36 hours': 'lr_36H_lat_lon.pkl'
25
+ }
26
+ }
27
+
28
+ # Define scaler paths
29
+ scaler_paths = {
30
+ 'Path': {
31
+ '3 hours': 'lr_3H_lat_lon_scaler.pkl',
32
+ '6 hours': 'lr_6H_lat_lon_scaler.pkl',
33
+ '9 hours': 'lr_9H_lat_lon_scaler.pkl',
34
+ '12 hours': 'lr_12H_lat_lon_scaler.pkl',
35
+ '15 hours': 'lr_15H_lat_lon_scaler.pkl',
36
+ '18 hours': 'lr_18H_lat_lon_scaler.pkl',
37
+ '24 hours': 'lr_24H_lat_lon_scaler.pkl',
38
+ '27 hours': 'lr_27H_lat_lon_scaler.pkl',
39
+ '30 hours': 'lr_30H_lat_lon_scaler.pkl',
40
+ '33 hours': 'lr_33H_lat_lon_scaler.pkl',
41
+ '36 hours': 'lr_36H_lat_lon_scaler.pkl'
42
+ }
43
+ }
44
+
45
+ # Load model and scaler based on time interval
46
+ def load_model(time_interval):
47
+ model = joblib.load(model_paths['Path'][time_interval])
48
+ scaler = joblib.load(scaler_paths['Path'][time_interval])
49
+ return model, scaler
50
+
51
+ def process_input(input_data, scaler):
52
+ input_data = np.array(input_data).reshape(-1, 7)
53
+ processed_data = input_data[:2].reshape(1, -1)
54
+ processed_data = scaler.transform(processed_data)
55
+ return processed_data
56
+
57
+ def predict_path(time_interval, input_data):
58
+ model, scaler = load_model(time_interval)
59
+ processed_data = process_input(input_data, scaler)
60
+ prediction = model.predict(processed_data)
61
+
62
+ # Create DataFrame for predictions
63
+ df_predictions = pd.DataFrame(prediction, columns=['LAT', 'LON'])
64
+ df_predictions['Time'] = [time_interval]
65
+ return df_predictions
66
+
67
+ # Function to plot predictions on a folium map and return the HTML representation
68
+ def plot_predictions_on_map(df_predictions):
69
+ latitudes = df_predictions['LAT'].tolist()
70
+ longitudes = df_predictions['LON'].tolist()
71
+
72
+ m = folium.Map(location=[latitudes[0], longitudes[0]], zoom_start=6)
73
+ locations = list(zip(latitudes, longitudes))
74
+
75
+ for lat, lon in locations:
76
+ folium.Marker([lat, lon]).add_to(m)
77
+
78
+ folium.PolyLine(locations, color='blue', weight=2.5, opacity=0.7).add_to(m)
79
+ return m
80
+
81
+ # Streamlit App
82
+ def main():
83
+ st.title("Cyclone Path Prediction")
84
+ st.write("Input current and previous cyclone data to predict the path and visualize it on a map.")
85
+
86
+ # User inputs
87
+ time_interval = st.selectbox("Select Prediction Time Interval", [
88
+ '3 hours', '6 hours', '9 hours', '12 hours', '15 hours', '18 hours',
89
+ '21 hours', '24 hours', '27 hours', '30 hours', '33 hours', '36 hours'
90
+ ])
91
+
92
+ previous_lat = st.number_input("Previous Latitude", format="%f")
93
+ previous_lon = st.number_input("Previous Longitude", format="%f")
94
+ previous_speed = st.number_input("Previous Speed", format="%f")
95
+ previous_year = st.number_input("Previous Year", format="%d")
96
+ previous_month = st.number_input("Previous Month", format="%d")
97
+ previous_day = st.number_input("Previous Day", format="%d")
98
+ previous_hour = st.number_input("Previous Hour", format="%d")
99
+
100
+ present_lat = st.number_input("Present Latitude", format="%f")
101
+ present_lon = st.number_input("Present Longitude", format="%f")
102
+ present_speed = st.number_input("Present Speed", format="%f")
103
+ present_year = st.number_input("Present Year", format="%d")
104
+ present_month = st.number_input("Present Month", format="%d")
105
+ present_day = st.number_input("Present Day", format="%d")
106
+ present_hour = st.number_input("Present Hour", format="%d")
107
+
108
+ if st.button("Predict"):
109
+ # Process input into array format
110
+ previous_data = [previous_lat, previous_lon, previous_speed, previous_year, previous_month, previous_day, previous_hour]
111
+ present_data = [present_lat, present_lon, present_speed, present_year, present_month, present_day, present_hour]
112
+ input_data = [previous_data, present_data]
113
+
114
+ # Predict path
115
+ df_predictions = predict_path(time_interval, input_data)
116
+
117
+ # Display predicted path DataFrame
118
+ st.write("Predicted Path DataFrame:")
119
+ st.write(df_predictions)
120
+
121
+ # Plot map with predictions
122
+ st.write("Cyclone Path Map:")
123
+ map_ = plot_predictions_on_map(df_predictions)
124
+ folium_static(map_)
125
+
126
+ if __name__ == "__main__":
127
+ main()