import joblib import numpy as np import pandas as pd import folium import streamlit as st from streamlit_folium import folium_static import warnings warnings.filterwarnings("ignore") # Define model paths model_paths = { 'Path': { '3 hours': 'lr_3H_lat_lon.pkl', '6 hours': 'lr_6H_lat_lon.pkl', '9 hours': 'lr_9H_lat_lon.pkl', '12 hours': 'lr_12H_lat_lon.pkl', '15 hours': 'lr_15H_lat_lon.pkl', '18 hours': 'lr_18H_lat_lon.pkl', '21 hours': 'lr_21H_lat_lon.pkl', '24 hours': 'lr_24H_lat_lon.pkl', '27 hours': 'lr_27H_lat_lon.pkl', '30 hours': 'lr_30H_lat_lon.pkl', '33 hours': 'lr_33H_lat_lon.pkl', '36 hours': 'lr_36H_lat_lon.pkl' } } # Define scaler paths scaler_paths = { 'Path': { '3 hours': 'lr_3H_lat_lon_scaler.pkl', '6 hours': 'lr_6H_lat_lon_scaler.pkl', '9 hours': 'lr_9H_lat_lon_scaler.pkl', '12 hours': 'lr_12H_lat_lon_scaler.pkl', '15 hours': 'lr_15H_lat_lon_scaler.pkl', '18 hours': 'lr_18H_lat_lon_scaler.pkl', '24 hours': 'lr_24H_lat_lon_scaler.pkl', '27 hours': 'lr_27H_lat_lon_scaler.pkl', '30 hours': 'lr_30H_lat_lon_scaler.pkl', '33 hours': 'lr_33H_lat_lon_scaler.pkl', '36 hours': 'lr_36H_lat_lon_scaler.pkl' } } # Load model and scaler based on time interval def load_model(time_interval): model = joblib.load(model_paths['Path'][time_interval]) scaler = joblib.load(scaler_paths['Path'][time_interval]) return model, scaler def process_input(input_data, scaler): input_data = np.array(input_data).reshape(-1, 7) processed_data = input_data[:2].reshape(1, -1) processed_data = scaler.transform(processed_data) return processed_data def predict_path(time_interval, input_data): model, scaler = load_model(time_interval) processed_data = process_input(input_data, scaler) prediction = model.predict(processed_data) # Create DataFrame for predictions df_predictions = pd.DataFrame(prediction, columns=['LAT', 'LON']) df_predictions['Time'] = [time_interval] return df_predictions # Function to plot predictions on a folium map and return the HTML representation def plot_predictions_on_map(df_predictions): latitudes = df_predictions['LAT'].tolist() longitudes = df_predictions['LON'].tolist() m = folium.Map(location=[latitudes[0], longitudes[0]], zoom_start=6) locations = list(zip(latitudes, longitudes)) for lat, lon in locations: folium.Marker([lat, lon]).add_to(m) folium.PolyLine(locations, color='blue', weight=2.5, opacity=0.7).add_to(m) return m # Streamlit App def main(): st.title("Cyclone Path Prediction") st.write("Input current and previous cyclone data to predict the path and visualize it on a map.") # User inputs time_interval = st.selectbox("Select Prediction Time Interval", [ '3 hours', '6 hours', '9 hours', '12 hours', '15 hours', '18 hours', '21 hours', '24 hours', '27 hours', '30 hours', '33 hours', '36 hours' ]) previous_lat = st.number_input("Previous Latitude", format="%f") previous_lon = st.number_input("Previous Longitude", format="%f") previous_speed = st.number_input("Previous Speed", format="%f") previous_year = st.number_input("Previous Year", format="%d") previous_month = st.number_input("Previous Month", format="%d") previous_day = st.number_input("Previous Day", format="%d") previous_hour = st.number_input("Previous Hour", format="%d") present_lat = st.number_input("Present Latitude", format="%f") present_lon = st.number_input("Present Longitude", format="%f") present_speed = st.number_input("Present Speed", format="%f") present_year = st.number_input("Present Year", format="%d") present_month = st.number_input("Present Month", format="%d") present_day = st.number_input("Present Day", format="%d") present_hour = st.number_input("Present Hour", format="%d") if st.button("Predict"): # Process input into array format previous_data = [previous_lat, previous_lon, previous_speed, previous_year, previous_month, previous_day, previous_hour] present_data = [present_lat, present_lon, present_speed, present_year, present_month, present_day, present_hour] input_data = [previous_data, present_data] # Predict path df_predictions = predict_path(time_interval, input_data) # Display predicted path DataFrame st.write("Predicted Path DataFrame:") st.write(df_predictions) # Plot map with predictions st.write("Cyclone Path Map:") map_ = plot_predictions_on_map(df_predictions) folium_static(map_) if __name__ == "__main__": main()