Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.document_loaders import OnlinePDFLoader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter
|
4 |
+
from langchain.llms import HuggingFaceHub
|
5 |
+
from langchain.embeddings import HuggingFaceHubEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
|
9 |
+
def loading_pdf(): return 'Loading...'
|
10 |
+
|
11 |
+
def pdf_changes(pdf_doc, repo_id):
|
12 |
+
loader = OnlinePDFLoader(pdf_doc.name)
|
13 |
+
documents = loader.load()
|
14 |
+
text_splitter = CharacterTextSplitter(chunk_size=2096, chunk_overlap=0)
|
15 |
+
texts = text_splitter.split_documents(documents)
|
16 |
+
embeddings = HuggingFaceHubEmbeddings()
|
17 |
+
db = Chroma.from_documents(texts, embeddings)
|
18 |
+
retriever = db.as_retriever()
|
19 |
+
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={'temperature': 0.5, 'max_new_tokens': 2096})
|
20 |
+
global qa
|
21 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=retriever, return_source_documents=True)
|
22 |
+
return "Ready"
|
23 |
+
|
24 |
+
def add_text(history, text):
|
25 |
+
history = history + [(text, None)]
|
26 |
+
return history, ''
|
27 |
+
|
28 |
+
def bot(history):
|
29 |
+
response = infer(history[-1][0])
|
30 |
+
history[-1][1] = response['result']
|
31 |
+
return history
|
32 |
+
|
33 |
+
def infer(question):
|
34 |
+
query = question
|
35 |
+
result = qa({'query': query})
|
36 |
+
return result
|
37 |
+
|
38 |
+
css="""
|
39 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
40 |
+
"""
|
41 |
+
|
42 |
+
title = """
|
43 |
+
<h1>Chat with PDF</h1>
|
44 |
+
"""
|
45 |
+
|
46 |
+
with gr.Blocks(css=css, theme='Taithrah/Minimal') as demo:
|
47 |
+
with gr.Column(elem_id='col-container'):
|
48 |
+
gr.HTML(title)
|
49 |
+
|
50 |
+
with gr.Column():
|
51 |
+
pdf_doc = gr.File(label='Upload a PDF', file_types=['.pdf'])
|
52 |
+
repo_id = gr.Dropdown(label='LLM',
|
53 |
+
choices=[
|
54 |
+
'mistralai/Mistral-7B-Instruct-v0.1',
|
55 |
+
'HuggingFaceH4/zephyr-7b-beta',
|
56 |
+
'meta-llama/Llama-2-7b-chat-hf',
|
57 |
+
'01-ai/Yi-6B-200K'
|
58 |
+
'cognitivecomputations/dolphin-2.5-mixtral-8x7b'
|
59 |
+
],
|
60 |
+
value='mistralai/Mistral-7B-Instruct-v0.1')
|
61 |
+
with gr.Row():
|
62 |
+
langchain_status = gr.Textbox(label='Status', placeholder='', interactive=False)
|
63 |
+
load_pdf = gr.Button('Load PDF to LangChain')
|
64 |
+
|
65 |
+
chatbot = gr.Chatbot([], elem_id='chatbot')#.style(height=350)
|
66 |
+
question = gr.Textbox(label='Question', placeholder='Type your query')
|
67 |
+
submit_btn = gr.Button('Send')
|
68 |
+
|
69 |
+
repo_id.change(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False)
|
70 |
+
load_pdf.click(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False)
|
71 |
+
question.submit(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot)
|
72 |
+
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(bot, chatbot, chatbot)
|
73 |
+
|
74 |
+
demo.launch()
|