upload files
Browse files- Final_model.joblib +3 -0
- Strealit_.jpg +0 -0
- app.py +138 -0
- numerical_imputer.joblib +3 -0
- requirements.txt +15 -0
- scaler.joblib +3 -0
Final_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc0cdce0c9881b90d42632fd0f12fc7a4d7114c9ea8eea7767ddf47d4a32de32
|
3 |
+
size 1193
|
Strealit_.jpg
ADDED
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import joblib
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import time
|
6 |
+
|
7 |
+
# Load the pre-trained numerical imputer, scaler, and model using joblib
|
8 |
+
num_imputer = joblib.load('numerical_imputer.joblib')
|
9 |
+
scaler = joblib.load('scaler.joblib')
|
10 |
+
model = joblib.load('Final_model.joblib')
|
11 |
+
|
12 |
+
# Define a function to preprocess the input data
|
13 |
+
def preprocess_input_data(input_data):
|
14 |
+
input_data_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
|
15 |
+
num_columns = input_data_df.select_dtypes(include='number').columns
|
16 |
+
|
17 |
+
input_data_imputed_num = num_imputer.transform(input_data_df[num_columns])
|
18 |
+
input_scaled_df = pd.DataFrame(scaler.transform(input_data_imputed_num), columns=num_columns)
|
19 |
+
|
20 |
+
return input_scaled_df
|
21 |
+
|
22 |
+
# Define a function to make the sepsis prediction
|
23 |
+
def predict_sepsis(input_data):
|
24 |
+
input_scaled_df = preprocess_input_data(input_data)
|
25 |
+
prediction = model.predict(input_scaled_df)[0]
|
26 |
+
probabilities = model.predict_proba(input_scaled_df)[0]
|
27 |
+
sepsis_status = "Positive" if prediction == 1 else "Negative"
|
28 |
+
|
29 |
+
output_df = pd.DataFrame(input_data, columns=['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance'])
|
30 |
+
output_df['Prediction'] = sepsis_status
|
31 |
+
output_df['Negative Probability'] = probabilities[0]
|
32 |
+
output_df['Positive Probability'] = probabilities[1]
|
33 |
+
|
34 |
+
return output_df, probabilities
|
35 |
+
|
36 |
+
# Create a Streamlit app
|
37 |
+
def main():
|
38 |
+
st.title('Sepsis Prediction App')
|
39 |
+
|
40 |
+
st.image("Strealit_.jpg")
|
41 |
+
|
42 |
+
# How to use
|
43 |
+
st.sidebar.title('How to Use')
|
44 |
+
st.sidebar.markdown('1. Adjust the input parameters on the left sidebar.')
|
45 |
+
st.sidebar.markdown('2. Click the "Predict" button to initiate the prediction.')
|
46 |
+
st.sidebar.markdown('3. The app will simulate a prediction process with a progress bar.')
|
47 |
+
st.sidebar.markdown('4. Once the prediction is complete, the results will be displayed below.')
|
48 |
+
|
49 |
+
|
50 |
+
st.sidebar.title('Input Parameters')
|
51 |
+
|
52 |
+
# Input parameter explanations
|
53 |
+
st.sidebar.markdown('**PRG:** Plasma Glucose')
|
54 |
+
PRG = st.sidebar.number_input('PRG', value=0.0)
|
55 |
+
|
56 |
+
st.sidebar.markdown('**PL:** Blood Work Result 1')
|
57 |
+
PL = st.sidebar.number_input('PL', value=0.0)
|
58 |
+
|
59 |
+
st.sidebar.markdown('**PR:** Blood Pressure Measured')
|
60 |
+
PR = st.sidebar.number_input('PR', value=0.0)
|
61 |
+
|
62 |
+
st.sidebar.markdown('**SK:** Blood Work Result 2')
|
63 |
+
SK = st.sidebar.number_input('SK', value=0.0)
|
64 |
+
|
65 |
+
st.sidebar.markdown('**TS:** Blood Work Result 3')
|
66 |
+
TS = st.sidebar.number_input('TS', value=0.0)
|
67 |
+
|
68 |
+
st.sidebar.markdown('**M11:** BMI')
|
69 |
+
M11 = st.sidebar.number_input('M11', value=0.0)
|
70 |
+
|
71 |
+
st.sidebar.markdown('**BD2:** Blood Work Result 4')
|
72 |
+
BD2 = st.sidebar.number_input('BD2', value=0.0)
|
73 |
+
|
74 |
+
st.sidebar.markdown('**Age:** What is the Age of the Patient: ')
|
75 |
+
Age = st.sidebar.number_input('Age', value=0.0)
|
76 |
+
|
77 |
+
st.sidebar.markdown('**Insurance:** Does the patient have Insurance?')
|
78 |
+
insurance_options = {0: 'NO', 1: 'YES'}
|
79 |
+
Insurance = st.sidebar.radio('Insurance', list(insurance_options.keys()), format_func=lambda x: insurance_options[x])
|
80 |
+
|
81 |
+
|
82 |
+
input_data = [[PRG, PL, PR, SK, TS, M11, BD2, Age, Insurance]]
|
83 |
+
|
84 |
+
if st.sidebar.button('Predict'):
|
85 |
+
with st.spinner("Predicting..."):
|
86 |
+
# Simulate a long-running process
|
87 |
+
progress_bar = st.progress(0)
|
88 |
+
for i in range(100):
|
89 |
+
time.sleep(0.1)
|
90 |
+
progress_bar.progress(i + 1)
|
91 |
+
|
92 |
+
output_df, probabilities = predict_sepsis(input_data)
|
93 |
+
|
94 |
+
st.subheader('Prediction Result')
|
95 |
+
st.write(output_df)
|
96 |
+
|
97 |
+
# Plot the probabilities
|
98 |
+
fig, ax = plt.subplots()
|
99 |
+
ax.bar(['Negative', 'Positive'], probabilities)
|
100 |
+
ax.set_xlabel('Sepsis Status')
|
101 |
+
ax.set_ylabel('Probability')
|
102 |
+
ax.set_title('Sepsis Prediction Probabilities')
|
103 |
+
st.pyplot(fig)
|
104 |
+
|
105 |
+
# Print feature importance
|
106 |
+
|
107 |
+
if hasattr(model, 'coef_'):
|
108 |
+
feature_importances = model.coef_[0]
|
109 |
+
feature_names = ['PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance']
|
110 |
+
|
111 |
+
importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': feature_importances})
|
112 |
+
importance_df = importance_df.sort_values('Importance', ascending=False)
|
113 |
+
|
114 |
+
st.subheader('Feature Importance')
|
115 |
+
fig, ax = plt.subplots()
|
116 |
+
bars = ax.bar(importance_df['Feature'], importance_df['Importance'])
|
117 |
+
ax.set_xlabel('Feature')
|
118 |
+
ax.set_ylabel('Importance')
|
119 |
+
ax.set_title('Feature Importance')
|
120 |
+
ax.tick_params(axis='x', rotation=45)
|
121 |
+
|
122 |
+
# Add data labels to the bars
|
123 |
+
for bar in bars:
|
124 |
+
height = bar.get_height()
|
125 |
+
ax.annotate(f'{height:.2f}', xy=(bar.get_x() + bar.get_width() / 2, height),
|
126 |
+
xytext=(0, 3), # 3 points vertical offset
|
127 |
+
textcoords="offset points",
|
128 |
+
ha='center', va='bottom')
|
129 |
+
st.pyplot(fig)
|
130 |
+
|
131 |
+
|
132 |
+
#st.subheader('Feature Importance')
|
133 |
+
#st.write(importance_df)
|
134 |
+
else:
|
135 |
+
st.write('Feature importance is not available for this model.')
|
136 |
+
|
137 |
+
if __name__ == '__main__':
|
138 |
+
main()
|
numerical_imputer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:813f988a029a281e5c01eb0c94b0cdb9b7cbcb28933051fd834bf97454a383c3
|
3 |
+
size 913
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib==1.2.0
|
2 |
+
matplotlib==3.7.1
|
3 |
+
matplotlib-inline==0.1.6
|
4 |
+
numpy==1.24.2
|
5 |
+
pandas==1.5.3
|
6 |
+
pip==23.0.1
|
7 |
+
pydantic==1.10.4
|
8 |
+
scikit-image==0.19.3
|
9 |
+
scikit-learn==1.2.2
|
10 |
+
scipy==1.10.0
|
11 |
+
seaborn==0.12.2
|
12 |
+
streamlit==1.20.0
|
13 |
+
fastapi==0.95.1
|
14 |
+
uvicorn==0.22.0
|
15 |
+
pydantic==1.10.7
|
scaler.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d6f13227d7d97b4d967de617f4b8a28f9b39871c7beff3a1046eaec37122201
|
3 |
+
size 752
|