Spaces:
Runtime error
Runtime error
File size: 29,623 Bytes
ae8e1dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import math
import random
import torch
from model import monotonic_align
from model.base import BaseModule
from model.text_encoder import TextEncoder
from model.diffusion import Diffusion
from model.utils import sequence_mask, generate_path, duration_loss, fix_len_compatibility
class GradTTSWithEmo(BaseModule):
def __init__(self, n_vocab=148, n_spks=1,n_emos=5, spk_emb_dim=64,
n_enc_channels=192, filter_channels=768, filter_channels_dp=256,
n_heads=2, n_enc_layers=6, enc_kernel=3, enc_dropout=0.1, window_size=4,
n_feats=80, dec_dim=64, beta_min=0.05, beta_max=20.0, pe_scale=1000,
use_classifier_free=False, dummy_spk_rate=0.5,
**kwargs):
super(GradTTSWithEmo, self).__init__()
self.n_vocab = n_vocab
self.n_spks = n_spks
self.n_emos = n_emos
self.spk_emb_dim = spk_emb_dim
self.n_enc_channels = n_enc_channels
self.filter_channels = filter_channels
self.filter_channels_dp = filter_channels_dp
self.n_heads = n_heads
self.n_enc_layers = n_enc_layers
self.enc_kernel = enc_kernel
self.enc_dropout = enc_dropout
self.window_size = window_size
self.n_feats = n_feats
self.dec_dim = dec_dim
self.beta_min = beta_min
self.beta_max = beta_max
self.pe_scale = pe_scale
self.use_classifier_free = use_classifier_free
# if n_spks > 1:
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
self.emo_emb = torch.nn.Embedding(n_emos, spk_emb_dim)
self.merge_spk_emo = torch.nn.Sequential(
torch.nn.Linear(spk_emb_dim*2, spk_emb_dim),
torch.nn.ReLU(),
torch.nn.Linear(spk_emb_dim, spk_emb_dim)
)
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels,
filter_channels, filter_channels_dp, n_heads,
n_enc_layers, enc_kernel, enc_dropout, window_size,
spk_emb_dim=spk_emb_dim, n_spks=n_spks)
self.decoder = Diffusion(n_feats, dec_dim, spk_emb_dim, beta_min, beta_max, pe_scale)
if self.use_classifier_free:
self.dummy_xv = torch.nn.Parameter(torch.randn(size=(spk_emb_dim, )))
self.dummy_rate = dummy_spk_rate
print(f"Using classifier free with rate {self.dummy_rate}")
@torch.no_grad()
def forward(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None,
length_scale=1.0, classifier_free_guidance=1., force_dur=None):
"""
Generates mel-spectrogram from text. Returns:
1. encoder outputs
2. decoder outputs
3. generated alignment
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
temperature (float, optional): controls variance of terminal distribution.
stoc (bool, optional): flag that adds stochastic term to the decoder sampler.
Usually, does not provide synthesis improvements.
length_scale (float, optional): controls speech pace.
Increase value to slow down generated speech and vice versa.
"""
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
emo = self.emo_emb(emo)
if self.use_classifier_free:
emo = emo / torch.sqrt(torch.sum(emo**2, dim=1, keepdim=True)) # unit norm
spk_merged = self.merge_spk_emo(torch.cat([spk, emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
if force_dur is not None:
w_ceil = force_dur.unsqueeze(1) # [1, 1, Ltext]
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# print(z)
# Generate sample by performing reverse dynamics
unit_dummy_emo = self.dummy_xv / torch.sqrt(torch.sum(self.dummy_xv**2)) if self.use_classifier_free else None
dummy_spk = self.merge_spk_emo(torch.cat([spk, unit_dummy_emo.unsqueeze(0).repeat(len(spk), 1)], dim=-1)) if self.use_classifier_free else None
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
use_classifier_free=self.use_classifier_free,
classifier_free_guidance=classifier_free_guidance,
dummy_spk=dummy_spk)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def classifier_guidance_decode(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None,
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
dummy_emo = self.emo_emb(torch.zeros_like(emo).long()) # this is for feeding the text encoder.
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
# print("w shape is ", w.shape)
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder.classifier_decode(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
classifier_func, guidance,
control_emo=emo, classifier_type=classifier_type)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def classifier_guidance_decode_DPS(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo=None,
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
dummy_emo = self.emo_emb(torch.zeros_like(emo).long()) # this is for feeding the text encoder.
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder.classifier_decode_DPS(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
classifier_func, guidance,
control_emo=emo, classifier_type=classifier_type)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def classifier_guidance_decode_two_mixture(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo1=None, emo2=None, emo1_weight=None,
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
dummy_emo = self.emo_emb(torch.zeros_like(emo1).long()) # this is for feeding the text encoder.
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder.classifier_decode_mixture(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
classifier_func, guidance,
control_emo1=emo1, control_emo2=emo2, emo1_weight=emo1_weight, classifier_type=classifier_type)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def classifier_guidance_decode_two_mixture_DPS(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, emo1=None, emo2=None, emo1_weight=None,
length_scale=1.0, classifier_func=None, guidance=1.0, classifier_type='conformer'):
x, x_lengths = self.relocate_input([x, x_lengths])
# Get speaker embedding
spk = self.spk_emb(spk)
dummy_emo = self.emo_emb(torch.zeros_like(emo1).long()) # this is for feeding the text encoder.
spk_merged = self.merge_spk_emo(torch.cat([spk, dummy_emo], dim=-1))
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk_merged)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
if classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
y_max_length = max(y_max_length, 180) # NOTE: added for CNN classifier
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder.classifier_decode_mixture_DPS(z, y_mask, mu_y, n_timesteps, stoc, spk_merged,
classifier_func, guidance,
control_emo1=emo1, control_emo2=emo2, emo1_weight=emo1_weight, classifier_type=classifier_type)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def compute_loss(self, x, x_lengths, y, y_lengths, spk=None, emo=None, out_size=None, use_gt_dur=False, durs=None):
"""
Computes 3 losses:
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
2. prior loss: loss between mel-spectrogram and encoder outputs.
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
y (torch.Tensor): batch of corresponding mel-spectrograms.
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
use_gt_dur: bool
durs: gt duration
"""
x, x_lengths, y, y_lengths = self.relocate_input([x, x_lengths, y, y_lengths]) # y: B, 80, L
spk = self.spk_emb(spk)
emo = self.emo_emb(emo) # [B, D]
if self.use_classifier_free:
emo = emo / torch.sqrt(torch.sum(emo ** 2, dim=1, keepdim=True)) # unit norm
use_dummy_per_sample = torch.distributions.Binomial(1, torch.tensor(
[self.dummy_rate] * len(emo))).sample().bool() # [b, ] True/False where True accords to rate
emo[use_dummy_per_sample] = (self.dummy_xv / torch.sqrt(
torch.sum(self.dummy_xv ** 2))) # substitute with dummy xv(unit norm too)
spk = self.merge_spk_emo(torch.cat([spk, emo], dim=-1)) # [B, D]
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
y_max_length = y.shape[-1]
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
if use_gt_dur:
attn = generate_path(durs, attn_mask.squeeze(1)).detach()
else:
with torch.no_grad():
const = -0.5 * math.log(2 * math.pi) * self.n_feats
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
y_square = torch.matmul(factor.transpose(1, 2), y ** 2)
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1)
log_prior = y_square - y_mu_double + mu_square + const
# it's actually the log likelihood of y given the Gaussian with (mu_x, I)
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
attn = attn.detach()
# Compute loss between predicted log-scaled durations and those obtained from MAS
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
dur_loss = duration_loss(logw, logw_, x_lengths)
# print(attn.shape)
# Cut a small segment of mel-spectrogram in order to increase batch size
if not isinstance(out_size, type(None)):
clip_size = min(out_size, y_max_length) # when out_size > max length, do not actually perform clipping
clip_size = -fix_len_compatibility(-clip_size) # this is to ensure dividable
max_offset = (y_lengths - clip_size).clamp(0)
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
out_offset = torch.LongTensor([
torch.tensor(random.choice(range(start, end)) if end > start else 0)
for start, end in offset_ranges
]).to(y_lengths)
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], clip_size, dtype=attn.dtype, device=attn.device)
y_cut = torch.zeros(y.shape[0], self.n_feats, clip_size, dtype=y.dtype, device=y.device)
y_cut_lengths = []
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
y_cut_length = clip_size + (y_lengths[i] - clip_size).clamp(None, 0)
y_cut_lengths.append(y_cut_length)
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
y_cut_lengths = torch.LongTensor(y_cut_lengths)
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
attn = attn_cut # attn -> [B, text_length, cut_length]. It does not begin from top left corner
y = y_cut
y_mask = y_cut_mask
# Align encoded text with mel-spectrogram and get mu_y segment
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2)) # here mu_x is not cut.
mu_y = mu_y.transpose(1, 2) # B, 80, cut_length
# Compute loss of score-based decoder
# print(y.shape, y_mask.shape, mu_y.shape)
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk)
# Compute loss between aligned encoder outputs and mel-spectrogram
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
return dur_loss, prior_loss, diff_loss
class GradTTSXvector(BaseModule):
def __init__(self, n_vocab=148, spk_emb_dim=64,
n_enc_channels=192, filter_channels=768, filter_channels_dp=256,
n_heads=2, n_enc_layers=6, enc_kernel=3, enc_dropout=0.1, window_size=4,
n_feats=80, dec_dim=64, beta_min=0.05, beta_max=20.0, pe_scale=1000, xvector_dim=512, **kwargs):
super(GradTTSXvector, self).__init__()
self.n_vocab = n_vocab
# self.n_spks = n_spks
self.spk_emb_dim = spk_emb_dim
self.n_enc_channels = n_enc_channels
self.filter_channels = filter_channels
self.filter_channels_dp = filter_channels_dp
self.n_heads = n_heads
self.n_enc_layers = n_enc_layers
self.enc_kernel = enc_kernel
self.enc_dropout = enc_dropout
self.window_size = window_size
self.n_feats = n_feats
self.dec_dim = dec_dim
self.beta_min = beta_min
self.beta_max = beta_max
self.pe_scale = pe_scale
self.xvector_proj = torch.nn.Linear(xvector_dim, spk_emb_dim)
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels,
filter_channels, filter_channels_dp, n_heads,
n_enc_layers, enc_kernel, enc_dropout, window_size,
spk_emb_dim=spk_emb_dim, n_spks=999) # NOTE: not important `n_spk`
self.decoder = Diffusion(n_feats, dec_dim, spk_emb_dim, beta_min, beta_max, pe_scale)
@torch.no_grad()
def forward(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, length_scale=1.0):
"""
Generates mel-spectrogram from text. Returns:
1. encoder outputs
2. decoder outputs
3. generated alignment
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
temperature (float, optional): controls variance of terminal distribution.
stoc (bool, optional): flag that adds stochastic term to the decoder sampler.
Usually, does not provide synthesis improvements.
length_scale (float, optional): controls speech pace.
Increase value to slow down generated speech and vice versa.
spk: actually the xvectors
"""
x, x_lengths = self.relocate_input([x, x_lengths])
spk = self.xvector_proj(spk) # NOTE: use x-vectors instead of speaker embedding
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timesteps, stoc, spk)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return encoder_outputs, decoder_outputs, attn[:, :, :y_max_length]
def compute_loss(self, x, x_lengths, y, y_lengths, spk=None, out_size=None, use_gt_dur=False, durs=None):
"""
Computes 3 losses:
1. duration loss: loss between predicted token durations and those extracted by Monotonic Alignment Search (MAS).
2. prior loss: loss between mel-spectrogram and encoder outputs.
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
y (torch.Tensor): batch of corresponding mel-spectrograms.
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
spk: xvector
use_gt_dur: bool
durs: gt duration
"""
x, x_lengths, y, y_lengths = self.relocate_input([x, x_lengths, y, y_lengths])
spk = self.xvector_proj(spk) # NOTE: use x-vectors instead of speaker embedding
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
y_max_length = y.shape[-1]
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
if not use_gt_dur:
with torch.no_grad():
const = -0.5 * math.log(2 * math.pi) * self.n_feats
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
y_square = torch.matmul(factor.transpose(1, 2), y ** 2)
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1)
log_prior = y_square - y_mu_double + mu_square + const
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
attn = attn.detach()
else:
with torch.no_grad():
attn = generate_path(durs, attn_mask.squeeze(1)).detach()
# Compute loss between predicted log-scaled durations and those obtained from MAS
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
dur_loss = duration_loss(logw, logw_, x_lengths)
# print(attn.shape)
# Cut a small segment of mel-spectrogram in order to increase batch size
if not isinstance(out_size, type(None)):
max_offset = (y_lengths - out_size).clamp(0)
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
out_offset = torch.LongTensor([
torch.tensor(random.choice(range(start, end)) if end > start else 0)
for start, end in offset_ranges
]).to(y_lengths)
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device)
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device)
y_cut_lengths = []
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0)
y_cut_lengths.append(y_cut_length)
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
y_cut_lengths = torch.LongTensor(y_cut_lengths)
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
attn = attn_cut
y = y_cut
y_mask = y_cut_mask
# Align encoded text with mel-spectrogram and get mu_y segment
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
# Compute loss of score-based decoder
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk)
# Compute loss between aligned encoder outputs and mel-spectrogram
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
return dur_loss, prior_loss, diff_loss
|