EmotionalIntensityControl / data_loader.py
AdalAbilbekov's picture
First commit
ae8e1dd
raw
history blame
10.2 kB
import os.path
import random
import numpy as np
import torch
import re
import torch.utils.data
import json
import kaldiio
from tqdm import tqdm
from text import text_to_sequence
class BaseLoader(torch.utils.data.Dataset):
def __init__(self, utts: str, hparams, feats_scp: str, utt2text:str):
"""
:param utts: file path. A list of utts for this loader. These are the only utts that this loader has access.
This loader only deals with text, duration and feats. Other files despite `utts` can be larger.
"""
self.n_mel_channels = hparams.n_mel_channels
self.sampling_rate = hparams.sampling_rate
self.utts = self.get_utts(utts)
self.utt2feat = self.get_utt2feat(feats_scp)
self.utt2text = self.get_utt2text(utt2text)
def get_utts(self, utts: str) -> list:
with open(utts, 'r') as f:
L = f.readlines()
L = list(map(lambda x: x.strip(), L))
random.seed(1234)
random.shuffle(L)
return L
def get_utt2feat(self, feats_scp: str):
utt2feat = kaldiio.load_scp(feats_scp) # lazy load mode
print(f"Succeed reading feats from {feats_scp}")
return utt2feat
def get_utt2text(self, utt2text: str):
with open(utt2text, 'r') as f:
L = f.readlines()
utt2text = {line.split()[0]: line.strip().split(" ", 1)[1] for line in L}
return utt2text
def get_mel_from_kaldi(self, utt):
feat = self.utt2feat[utt]
feat = torch.FloatTensor(feat).squeeze()
assert self.n_mel_channels in feat.shape
if feat.shape[0] == self.n_mel_channels:
return feat
else:
return feat.T
def get_text(self, utt):
text = self.utt2text[utt]
text_norm = text_to_sequence(text)
text_norm = torch.IntTensor(text_norm)
return text_norm
def __getitem__(self, index):
res = self.get_mel_text_pair(self.utts[index])
return res
def __len__(self):
return len(self.utts)
def sample_test_batch(self, size):
idx = np.random.choice(range(len(self)), size=size, replace=False)
test_batch = []
for index in idx:
test_batch.append(self.__getitem__(index))
return test_batch
class SpkIDLoader(BaseLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
utt2phn_duration: str, utt2spk: str):
"""
:param utt2spk: json file path (utt name -> spk id)
This loader loads speaker as a speaker ID for embedding table
"""
super(SpkIDLoader, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration)
self.utt2spk = self.get_utt2spk(utt2spk)
def get_utt2spk(self, utt2spk: str) -> dict:
with open(utt2spk, 'r') as f:
res = json.load(f)
return res
def get_mel_text_pair(self, utt):
# separate filename and text
spkid = self.utt2spk[utt]
phn_ids = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
dur = self.get_dur_from_kaldi(utt)
assert sum(dur) == mel.shape[1], f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}"
res = {
"utt": utt,
"mel": mel,
"spk_ids": spkid
}
return res
def __getitem__(self, index):
res = self.get_mel_text_pair(self.utts[index])
return res
def __len__(self):
return len(self.utts)
class SpkIDLoaderWithEmo(BaseLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2text:str, utt2spk: str, utt2emo: str):
"""
:param utt2spk: json file path (utt name -> spk id)
This loader loads speaker as a speaker ID for embedding table
"""
super(SpkIDLoaderWithEmo, self).__init__(utts, hparams, feats_scp, utt2text)
self.utt2spk = self.get_utt2spk(utt2spk)
self.utt2emo = self.get_utt2emo(utt2emo)
def get_utt2spk(self, utt2spk: str) -> dict:
with open(utt2spk, 'r') as f:
res = json.load(f)
return res
def get_utt2emo(self, utt2emo: str) -> dict:
with open(utt2emo, 'r') as f:
res = json.load(f)
return res
def get_mel_text_pair(self, utt):
# separate filename and text
spkid = int(self.utt2spk[utt])
emoid = int(self.utt2emo[utt])
text = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
res = {
"utt": utt,
"text": text,
"mel": mel,
"spk_ids": spkid,
"emo_ids": emoid
}
return res
def __getitem__(self, index):
res = self.get_mel_text_pair(self.utts[index])
return res
def __len__(self):
return len(self.utts)
class SpkIDLoaderWithPE(SpkIDLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
utt2phn_duration: str, utt2spk: str, var_scp: str):
"""
This loader loads speaker ID together with variance (4-dim pitch, 1-dim energy)
"""
super(SpkIDLoaderWithPE, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration, utt2spk)
self.utt2var = self.get_utt2var(var_scp)
def get_utt2var(self, utt2var: str) -> dict:
res = kaldiio.load_scp(utt2var)
print(f"Succeed reading feats from {utt2var}")
return res
def get_var_from_kaldi(self, utt):
var = self.utt2var[utt]
var = torch.FloatTensor(var).squeeze()
assert 5 in var.shape
if var.shape[0] == 5:
return var
else:
return var.T
def get_mel_text_pair(self, utt):
# separate filename and text
spkid = self.utt2spk[utt]
phn_ids = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
dur = self.get_dur_from_kaldi(utt)
var = self.get_var_from_kaldi(utt)
assert sum(dur) == mel.shape[1] == var.shape[1], \
f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}, var: {var.shape[1]}"
res = {
"utt": utt,
"phn_ids": phn_ids,
"mel": mel,
"dur": dur,
"spk_ids": spkid,
"var": var
}
return res
class XvectorLoader(BaseLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
utt2phn_duration: str, utt2spk_name: str, spk_xvector_scp: str):
"""
:param utt2spk_name: like kaldi-style utt2spk
:param spk_xvector_scp: kaldi-style speaker-level xvector.scp
"""
super(XvectorLoader, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration)
self.utt2spk = self.get_utt2spk(utt2spk_name)
self.spk2xvector = self.get_spk2xvector(spk_xvector_scp)
def get_utt2spk(self, utt2spk):
res = dict()
with open(utt2spk, 'r') as f:
for l in f.readlines():
res[l.split()[0]] = l.split()[1]
return res
def get_spk2xvector(self, spk_xvector_scp: str) -> dict:
res = kaldiio.load_scp(spk_xvector_scp)
print(f"Succeed reading xvector from {spk_xvector_scp}")
return res
def get_xvector(self, utt):
xv = self.spk2xvector[self.utt2spk[utt]]
xv = torch.FloatTensor(xv).squeeze()
return xv
def get_mel_text_pair(self, utt):
phn_ids = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
dur = self.get_dur_from_kaldi(utt)
xvector = self.get_xvector(utt)
assert sum(dur) == mel.shape[1], \
f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}"
res = {
"utt": utt,
"phn_ids": phn_ids,
"mel": mel,
"dur": dur,
"xvector": xvector,
}
return res
class XvectorLoaderWithPE(BaseLoader):
def __init__(self, utts: str, hparams, feats_scp: str, utt2phns: str, phn2id: str,
utt2phn_duration: str, utt2spk_name: str, spk_xvector_scp: str, var_scp: str):
super(XvectorLoaderWithPE, self).__init__(utts, hparams, feats_scp, utt2phns, phn2id, utt2phn_duration)
self.utt2spk = self.get_utt2spk(utt2spk_name)
self.spk2xvector = self.get_spk2xvector(spk_xvector_scp)
self.utt2var = self.get_utt2var(var_scp)
def get_spk2xvector(self, spk_xvector_scp: str) -> dict:
res = kaldiio.load_scp(spk_xvector_scp)
print(f"Succeed reading xvector from {spk_xvector_scp}")
return res
def get_utt2spk(self, utt2spk):
res = dict()
with open(utt2spk, 'r') as f:
for l in f.readlines():
res[l.split()[0]] = l.split()[1]
return res
def get_utt2var(self, utt2var: str) -> dict:
res = kaldiio.load_scp(utt2var)
print(f"Succeed reading feats from {utt2var}")
return res
def get_var_from_kaldi(self, utt):
var = self.utt2var[utt]
var = torch.FloatTensor(var).squeeze()
assert 5 in var.shape
if var.shape[0] == 5:
return var
else:
return var.T
def get_xvector(self, utt):
xv = self.spk2xvector[self.utt2spk[utt]]
xv = torch.FloatTensor(xv).squeeze()
return xv
def get_mel_text_pair(self, utt):
# separate filename and text
spkid = self.utt2spk[utt]
phn_ids = self.get_text(utt)
mel = self.get_mel_from_kaldi(utt)
dur = self.get_dur_from_kaldi(utt)
var = self.get_var_from_kaldi(utt)
xvector = self.get_xvector(utt)
assert sum(dur) == mel.shape[1] == var.shape[1], \
f"Frame length mismatch: utt {utt}, dur: {sum(dur)}, mel: {mel.shape[1]}, var: {var.shape[1]}"
res = {
"utt": utt,
"phn_ids": phn_ids,
"mel": mel,
"dur": dur,
"spk_ids": spkid,
"var": var,
"xvector": xvector
}
return res