AdalAbilbekov's picture
First commit
ae8e1dd
raw
history blame
24.3 kB
import torch
import torch.nn as nn
from torch import Tensor, BoolTensor
from typing import Optional, Tuple, Iterable
from model.diffusion import SinusoidalPosEmb
from torch.nn.functional import pad
import math
def silu(input):
'''
Applies the Sigmoid Linear Unit (SiLU) function element-wise:
SiLU(x) = x * sigmoid(x)
'''
return input * torch.sigmoid(input) # use torch.sigmoid to make sure that we created the most efficient implemetation based on builtin PyTorch functions
class RelPositionMultiHeadedAttention(nn.Module):
"""Multi-Head Self-Attention layer with relative position encoding.
Paper: https://arxiv.org/abs/1901.02860
Args:
n_head: The number of heads.
d: The number of features.
dropout: Dropout rate.
zero_triu: Whether to zero the upper triangular part of attention matrix.
"""
def __init__(
self, d: int, n_head: int, dropout: float
):
super().__init__()
assert d % n_head == 0
self.c = d // n_head
self.h = n_head
self.linear_q = nn.Linear(d, d)
self.linear_k = nn.Linear(d, d)
self.linear_v = nn.Linear(d, d)
self.linear_out = nn.Linear(d, d)
self.p_attn = None
self.dropout = nn.Dropout(p=dropout)
# linear transformation for positional encoding
self.linear_pos = nn.Linear(d, d, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.u = nn.Parameter(torch.Tensor(self.h, self.c))
self.v = nn.Parameter(torch.Tensor(self.h, self.c))
# [H, C]
torch.nn.init.xavier_uniform_(self.u)
torch.nn.init.xavier_uniform_(self.v)
def forward_qkv(self, query, key, value) -> Tuple[Tensor, ...]:
"""Transform query, key and value.
Args:
query (Tensor): [B, S, D].
key (Tensor): [B, T, D].
value (Tensor): [B, T, D].
Returns:
q (Tensor): [B, H, S, C].
k (Tensor): [B, H, T, C].
v (Tensor): [B, H, T, C].
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.c)
k = self.linear_k(key).view(n_batch, -1, self.h, self.c)
v = self.linear_v(value).view(n_batch, -1, self.h, self.c)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
return q, k, v
def forward_attention(self, v, scores, mask, causal=False) -> Tensor:
"""Compute attention context vector.
Args:
v (Tensor): [B, H, T, C].
scores (Tensor): [B, H, S, T].
mask (BoolTensor): [B, T], True values are masked from scores.
Returns:
result (Tensor): [B, S, D]. Attention result weighted by the score.
"""
n_batch, H, S, T = scores.shape
if mask is not None:
scores = scores.masked_fill(
mask.unsqueeze(1).unsqueeze(2).to(bool),
float("-inf"), # [B, H, S, T]
)
if causal:
k_grid = torch.arange(0, S, dtype=torch.int32, device=scores.device)
v_grid = torch.arange(0, T, dtype=torch.int32, device=scores.device)
kk, vv = torch.meshgrid(k_grid, v_grid, indexing="ij")
causal_mask = vv > kk
scores = scores.masked_fill(
causal_mask.view(1, 1, S, T), float("-inf")
)
p_attn = self.p_attn = torch.softmax(scores, dim=-1) # [B, H, S, T]
p_attn = self.dropout(p_attn) # [B, H, S, T]
x = torch.matmul(p_attn, v) # [B, H, S, C]
x = (
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.c)
) # [B, S, D]
return self.linear_out(x) # [B, S, D]
def rel_shift(self, x):
"""Converting (..., i, i - j) matrix into (..., i, j) matrix.
Args:
x (Tensor): [B, H, S, 2S-1].
Returns:
x (Tensor): [B, H, S, S].
Example: Take S = 2 for example, larger values work similarly.
x = [
[(0, -1), (0, 0), (0, 1)],
[(1, 0), (1, 1), (1, 2)]
]
x_padded = [
[(x, x), (0, -1), (0, 0), (0, 1)],
[(x, x), (1, 0), (1, 1), (1, 2)]]
]
x_padded = [
[(x, x), (0, -1)],
[(0, 0), (0, 1)],
[(x, x), (1, 0)],
[(1, 1), (1, 2)]
]
x = [
[(0, 0), (0, 1)],
[(1, 0), (1, 1)]
]
"""
B, H, S, _ = x.shape
zero_pad = torch.zeros((B, H, S, 1), device=x.device, dtype=x.dtype)
# [B, H, S, 1]
x_padded = torch.cat([zero_pad, x], dim=-1)
# [B, H, S, 2S]
x_padded = x_padded.view(B, H, 2 * S, S)
# [B, H, 2S, S]
x = x_padded[:, :, 1:].view_as(x)[:, :, :, :S]
# only keep the positions from 0 to S
# [B, H, 2S-1, S] <view> [B, H, S, 2S - 1] <truncate in dim -1> [B, H, S, S]
return x
def forward(
self, query, key, value, pos_emb, mask=None, causal=False):
"""Compute self-attention with relative positional embedding.
Args:
query (Tensor): [B, S, D].
key (Tensor): [B, S, D].
value (Tensor): [B, S, D].
pos_emb (Tensor): [1/B, 2S-1, D]. Positional embedding.
mask (BoolTensor): [B, S], True for masked.
causal (bool): True for applying causal mask.
Returns:
output (Tensor): [B, S, D].
"""
# Splitting Q, K, V:
q, k, v = self.forward_qkv(query, key, value)
# [B, H, S, C], [B, H, S, C], [B, H, S, C]
# Adding per head & channel biases to the query vectors:
q_u = q + self.u.unsqueeze(1)
q_v = q + self.v.unsqueeze(1)
# [B, H, S, C]
# Splitting relative positional coding:
n_batch_pos = pos_emb.size(0) # [1/B, 2S-1, D]
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.c)
# [1/B, 2S-1, H, C]
p = p.transpose(1, 2) # [1/B, H, 2S-1, C].
# Compute query, key similarity:
matrix_ac = torch.matmul(q_u, k.transpose(-2, -1))
# [B, H, S, C] x [B, H, C, S] -> [B, H, S, S]
matrix_bd = torch.matmul(q_v, p.transpose(-2, -1))
# [B, H, S, C] x [1/B, H, C, 2S-1] -> [B, H, S, 2S-1]
matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(self.c)
# [B, H, S, S]
return self.forward_attention(v, scores, mask, causal) # [B, S, D]
class ConditionalBiasScale(nn.Module):
def __init__(self, channels: int, cond_channels: int):
super().__init__()
self.scale_transform = nn.Linear(
cond_channels, channels, bias=True
)
self.bias_transform = nn.Linear(
cond_channels, channels, bias=True
)
self.init_parameters()
def init_parameters(self):
torch.nn.init.constant_(self.scale_transform.weight, 0.0)
torch.nn.init.constant_(self.scale_transform.bias, 1.0)
torch.nn.init.constant_(self.bias_transform.weight, 0.0)
torch.nn.init.constant_(self.bias_transform.bias, 0.0)
def forward(self, x: Tensor, cond: Tensor) -> Tensor:
"""Applying conditional bias and scale.
Args:
x (Tensor): [..., channels].
cond (Tensor): [..., cond_channels].
Returns:
y (Tensor): [..., channels].
"""
a = self.scale_transform.forward(cond)
b = self.bias_transform.forward(cond)
return x * a + b
class FeedForwardModule(torch.nn.Module):
"""Positionwise feed forward layer used in conformer"""
def __init__(
self, d_in: int, d_hidden: int,
dropout: float, bias: bool = True, d_cond: int = 0
):
"""
Args:
d_in (int): Input feature dimension.
d_hidden (int): Hidden unit dimension.
dropout (float): dropout value for first Linear Layer.
bias (bool): If linear layers should have bias.
d_cond (int, optional): The channels of conditional tensor.
"""
super(FeedForwardModule, self).__init__()
self.layer_norm = torch.nn.LayerNorm(d_in)
if d_cond > 0:
self.cond_layer = ConditionalBiasScale(d_in, d_cond)
self.w_1 = torch.nn.Linear(d_in, d_hidden, bias=bias)
self.w_2 = torch.nn.Linear(d_hidden, d_in, bias=bias)
self.dropout = torch.nn.Dropout(dropout)
def forward(self, x: Tensor, cond: Optional[Tensor] = None) -> Tensor:
"""
Args:
x (Tensor): [..., D].
Returns:
y (Tensor): [..., D].
cond (Tensor): [..., D_cond]
"""
x = self.layer_norm(x)
if cond is not None:
x = self.cond_layer.forward(x, cond)
x = self.w_1(x)
x = silu(x)
x = self.dropout(x)
x = self.w_2(x)
return self.dropout(x)
class RelPositionalEncoding(nn.Module):
"""Relative positional encoding cache.
Args:
d_model: Embedding dimension.
dropout_rate: Dropout rate.
max_len: Default maximum input length.
"""
def __init__(self, max_len: int, d_model: int):
super().__init__()
self.d_model = d_model
self.cached_code = None
self.l = 0
self.gen_code(torch.tensor(0.0).expand(1, max_len))
def gen_code(self, x: Tensor):
"""Generate positional encoding with a reference tensor x.
Args:
x (Tensor): [B, L, ...], we extract the device, length, and dtype from it.
Effects:
self.cached_code (Tensor): [1, >=(2L-1), D].
"""
l = x.size(1)
if self.l >= l:
if self.cached_code.dtype != x.dtype or self.cached_code.device != x.device:
self.cached_code = self.cached_code.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
code_pos = torch.zeros(l, self.d_model) # [L, D]
code_neg = torch.zeros(l, self.d_model) # [L, D]
pos = torch.arange(0, l, dtype=torch.float32).unsqueeze(1) # [L, 1]
decay = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
) # [D // 2]
code_pos[:, 0::2] = torch.sin(pos * decay)
code_pos[:, 1::2] = torch.cos(pos * decay)
code_neg[:, 0::2] = torch.sin(-1 * pos * decay)
code_neg[:, 1::2] = torch.cos(-1 * pos * decay)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
code_pos = torch.flip(code_pos, [0]).unsqueeze(0) # [1, L, D]
code_neg = code_neg[1:].unsqueeze(0) # [1, L - 1, D]
code = torch.cat([code_pos, code_neg], dim=1) # [1, 2L - 1, D]
self.cached_code = code.to(device=x.device, dtype=x.dtype)
self.l = l
def forward(self, x: Tensor) -> Tensor:
"""Get positional encoding of appropriate shape given a reference Tensor.
Args:
x (Tensor): [B, L, ...].
Returns:
y (Tensor): [1, 2L-1, D].
"""
self.gen_code(x)
l = x.size(1)
pos_emb = self.cached_code[
:, self.l - l: self.l + l - 1,
]
return pos_emb
class ConformerBlock(torch.nn.Module):
"""Conformer block based on https://arxiv.org/abs/2005.08100."""
def __init__(
self, d: int, d_hidden: int,
attention_heads: int, dropout: float,
depthwise_conv_kernel_size: int = 7,
causal: bool = False, d_cond: int = 0
):
"""
Args:
d (int): Block input output channel number.
d_hidden (int): FFN layer dimension.
attention_heads (int): Number of attention heads.
dropout (float): dropout value.
depthwise_conv_kernel_size (int): Size of kernel in depthwise conv.
d_cond (int, optional): The channels of conditional tensor.
"""
super(ConformerBlock, self).__init__()
self.causal = causal
self.ffn1 = FeedForwardModule(
d, d_hidden, dropout, bias=True, d_cond=d_cond
)
self.self_attn_layer_norm = torch.nn.LayerNorm(d)
if d_cond > 0:
self.cond_layer = ConditionalBiasScale(d, d_cond)
self.self_attn = RelPositionMultiHeadedAttention(
d, attention_heads, dropout=dropout
)
self.self_attn_dropout = torch.nn.Dropout(dropout)
self.conv_module = ConvolutionModule(
d_in=d, d_hidden=d,
depthwise_kernel_size=depthwise_conv_kernel_size,
dropout=dropout, d_cond=d_cond
)
self.ffn2 = FeedForwardModule(
d, d_hidden, dropout, bias=True, d_cond=d_cond
)
self.final_layer_norm = torch.nn.LayerNorm(d)
def forward(
self, x: Tensor, mask: BoolTensor, pos_emb: Tensor,
cond: Optional[Tensor] = None
) -> Tensor:
"""
Args:
x (Tensor): [B, T, D_in].
mask (BoolTensor): [B, T], True for masked.
pos_emb (Tensor): [1 or B, 2T-1, D].
cond (Tensor, optional): [B, ?, D_cond].
Returns:
y (Tensor): [B, T, D_in].
"""
y = x
x = self.ffn1(x) * 0.5 + y
y = x
# [B, T, D_in]
x = self.self_attn_layer_norm(x)
if cond is not None:
x = self.cond_layer.forward(x, cond)
x = self.self_attn.forward(
query=x, key=x, value=x,
pos_emb=pos_emb,
mask=mask, causal=self.causal
)
x = self.self_attn_dropout(x) + y
y = x
# [B, T, D_in]
x = self.conv_module.forward(x, mask) + y
y = x
# [B, T, D_in]
x = self.ffn2(x) * 0.5 + y
x = self.final_layer_norm(x)
x.masked_fill(mask.unsqueeze(-1), 0.0)
return x
class ConvolutionModule(torch.nn.Module):
"""Convolution Block inside a Conformer Block."""
def __init__(
self, d_in: int, d_hidden: int,
depthwise_kernel_size: int,
dropout: float, bias: bool = False,
causal: bool = False, d_cond: int = 0
):
"""
Args:
d_in (int): Embedding dimension.
d_hidden (int): Number of channels in depthwise conv layers.
depthwise_kernel_size (int): Depthwise conv layer kernel size.
dropout (float): dropout value.
bias (bool): If bias should be added to conv layers.
conditional (bool): Whether to use conditional LayerNorm.
"""
super(ConvolutionModule, self).__init__()
assert (depthwise_kernel_size - 1) % 2 == 0, "kernel_size should be odd"
self.causal = causal
self.causal_padding = (depthwise_kernel_size - 1, 0)
self.layer_norm = torch.nn.LayerNorm(d_in)
# Optional conditional LayerNorm:
self.d_cond = d_cond
if d_cond > 0:
self.cond_layer = ConditionalBiasScale(d_in, d_cond)
self.pointwise_conv1 = torch.nn.Conv1d(
d_in, 2 * d_hidden,
kernel_size=1,
stride=1, padding=0,
bias=bias
)
self.glu = torch.nn.GLU(dim=1)
self.depthwise_conv = torch.nn.Conv1d(
d_hidden, d_hidden,
kernel_size=depthwise_kernel_size,
stride=1,
padding=(depthwise_kernel_size - 1) // 2 if not causal else 0,
groups=d_hidden, bias=bias
)
self.pointwise_conv2 = torch.nn.Conv1d(
d_hidden, d_in,
kernel_size=1,
stride=1, padding=0,
bias=bias,
)
self.dropout = torch.nn.Dropout(dropout)
def forward(self, x: Tensor, mask: BoolTensor, cond: Optional[Tensor] = None) -> Tensor:
"""
Args:
x (Tensor): [B, T, D_in].
mask (BoolTensor): [B, T], True for masked.
cond (Tensor): [B, T, D_cond].
Returns:
y (Tensor): [B, T, D_in].
"""
x = self.layer_norm(x)
if cond is not None:
x = self.cond_layer.forward(x, cond)
x = x.transpose(-1, -2) # [B, D_in, T]
x = self.pointwise_conv1(x) # [B, 2C, T]
x = self.glu(x) # [B, C, T]
# Take care of masking the input tensor:
if mask is not None:
x = x.masked_fill(mask.unsqueeze(1), 0.0)
# 1D Depthwise Conv
if self.causal: # Causal padding
x = pad(x, self.causal_padding)
x = self.depthwise_conv(x)
# FIXME: BatchNorm should not be used in variable length training.
x = silu(x) # [B, C, T]
if mask is not None:
x = x.masked_fill(mask.unsqueeze(1), 0.0)
x = self.pointwise_conv2(x)
x = self.dropout(x)
return x.transpose(-1, -2) # [B, T, D_in]
class Conformer(torch.nn.Module):
def __init__(
self,
d: int,
d_hidden: int,
n_heads: int,
n_layers: int,
dropout: float,
depthwise_conv_kernel_size: int,
causal: bool = False,
d_cond: int = 0
):
super().__init__()
self.pos_encoding = RelPositionalEncoding(1024, d)
self.causal = causal
self.blocks = torch.nn.ModuleList(
[
ConformerBlock(
d=d,
d_hidden=d_hidden,
attention_heads=n_heads,
dropout=dropout,
depthwise_conv_kernel_size=depthwise_conv_kernel_size,
causal=causal,
d_cond=d_cond
)
for _ in range(n_layers)
]
) # type: Iterable[ConformerBlock]
def forward(
self, x: Tensor, mask: BoolTensor, cond: Tensor = None
) -> Tensor:
"""Conformer forwarding.
Args:
x (Tensor): [B, T, D].
mask (BoolTensor): [B, T], with True for masked.
cond (Tensor, optional): [B, T, D_cond].
Returns:
y (Tensor): [B, T, D]
"""
pos_emb = self.pos_encoding(x) # [1, 2T-1, D]
for block in self.blocks:
x = block.forward(x, mask, pos_emb, cond)
return x
class CNNBlock(nn.Module):
def __init__(self, in_dim, out_dim, dropout, cond_dim, kernel_size, stride):
super(CNNBlock, self).__init__()
self.layers = nn.Sequential(
nn.Conv1d(in_dim, out_dim, kernel_size, stride),
nn.ReLU(),
nn.BatchNorm1d(out_dim,),
nn.Dropout(p=dropout)
)
def forward(self, inp):
out = self.layers(inp)
return out
class CNNClassifier(nn.Module):
def __init__(self, in_dim, d_decoder, decoder_dropout, cond_dim):
super(CNNClassifier, self).__init__()
self.cnn = nn.Sequential(
CNNBlock(in_dim, d_decoder, decoder_dropout, cond_dim, 8, 4),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 8, 4),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
) # receptive field is 180, frame shift is 64
self.cond_layer = nn.Sequential(
nn.Linear(cond_dim, in_dim),
nn.LeakyReLU(),
nn.Linear(in_dim, in_dim)
)
def forward(self, inp, mask, cond):
inp = inp.transpose(-1, -2)
cond = cond.transpose(-1, -2)
inp.masked_fill_(mask.unsqueeze(1), 0.0)
cond = self.cond_layer(cond.transpose(-1, -2)).transpose(-1, -2)
cond.masked_fill_(mask.unsqueeze(1), 0.0)
inp = inp + cond
return self.cnn(inp)
class CNNClassifierWithTime(nn.Module):
def __init__(self, in_dim, d_decoder, decoder_dropout, cond_dim, time_emb_dim=512):
super(CNNClassifierWithTime, self).__init__()
self.cnn = nn.Sequential(
CNNBlock(in_dim, d_decoder, decoder_dropout, cond_dim, 8, 4),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 8, 4),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
CNNBlock(d_decoder, d_decoder, decoder_dropout, cond_dim, 4, 2),
) # receptive field is 180, frame shift is 64
self.cond_layer = nn.Sequential(
nn.Linear(cond_dim, in_dim),
nn.LeakyReLU(),
nn.Linear(in_dim, in_dim)
)
self.time_emb = SinusoidalPosEmb(time_emb_dim)
self.time_layer = nn.Sequential(
nn.Linear(time_emb_dim, in_dim),
nn.LeakyReLU(),
nn.Linear(in_dim, in_dim)
)
def forward(self, inp, mask, cond, t):
time_emb = self.time_emb(t) # [B, T]
time_emb = self.time_layer(time_emb.unsqueeze(1)).transpose(-1, -2)
inp = inp.transpose(-1, -2)
cond = cond.transpose(-1, -2)
inp.masked_fill_(mask.unsqueeze(1), 0.0)
cond = self.cond_layer(cond.transpose(-1, -2)).transpose(-1, -2)
cond.masked_fill_(mask.unsqueeze(1), 0.0)
inp = inp + cond + time_emb
return self.cnn(inp)
class SpecClassifier(nn.Module):
def __init__(self, in_dim, d_decoder, h_decoder,
l_decoder, decoder_dropout,
k_decoder, n_class, cond_dim, model_type='conformer'):
super(SpecClassifier, self).__init__()
self.model_type = model_type
self.prenet = nn.Sequential(
nn.Linear(in_features=in_dim, out_features=d_decoder)
)
if model_type == 'conformer':
self.conformer = Conformer(d=d_decoder, d_hidden=d_decoder, n_heads=h_decoder,
n_layers=l_decoder, dropout=decoder_dropout,
depthwise_conv_kernel_size=k_decoder, d_cond=cond_dim)
elif model_type == 'CNN':
self.conformer = CNNClassifier(in_dim=d_decoder, d_decoder=d_decoder,
decoder_dropout=decoder_dropout, cond_dim=cond_dim)
elif model_type == 'CNN-with-time':
self.conformer = CNNClassifierWithTime(in_dim=d_decoder, d_decoder=d_decoder,
decoder_dropout=decoder_dropout, cond_dim=cond_dim, time_emb_dim=256)
self.classifier = nn.Linear(d_decoder, n_class)
def forward(self, noisy_mel, condition, mask, **kwargs):
"""
Args:
noisy_mel: [B, T, D]
condition: [B, T, D]
mask: [B, T] with True for un-masked (real-values)
Returns:
classification logits (un-softmaxed)
"""
# print(noisy_mel.shape)
noisy_mel = noisy_mel.masked_fill(~mask.unsqueeze(-1), 0.0)
# print(self.prenet, noisy_mel.shape)
hiddens = self.prenet(noisy_mel)
if self.model_type == 'CNN-with-time':
hiddens = self.conformer.forward(hiddens, ~mask, condition, kwargs['t'])
else:
hiddens = self.conformer.forward(hiddens, ~mask, condition) # [B, T, D]
if self.model_type == 'conformer':
averaged_hiddens = torch.mean(hiddens, dim=1) # [B, D]
logits = self.classifier(averaged_hiddens)
return logits
elif self.model_type == 'CNN' or self.model_type == 'CNN-with-time':
hiddens = hiddens.transpose(-1, -2)
return self.classifier(hiddens) # [B, T', C]
@property
def nparams(self):
return sum([p.numel() for p in self.parameters()])