AdalAbilbekov's picture
First commit
ae8e1dd
raw
history blame
9.57 kB
import numpy as np
from tqdm import tqdm
from copy import deepcopy
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import data_collate
import data_loader
from utils_data import plot_tensor, save_plot
from model.utils import fix_len_compatibility
from text.symbols import symbols
import utils_data as utils
class ModelEmaV2(torch.nn.Module):
def __init__(self, model, decay=0.9999, device=None):
super(ModelEmaV2, self).__init__()
self.model_state_dict = deepcopy(model.state_dict())
self.decay = decay
self.device = device # perform ema on different device from model if set
def _update(self, model, update_fn):
with torch.no_grad():
for ema_v, model_v in zip(self.model_state_dict.values(), model.state_dict().values()):
if self.device is not None:
model_v = model_v.to(device=self.device)
ema_v.copy_(update_fn(ema_v, model_v))
def update(self, model):
self._update(model, update_fn=lambda e, m: self.decay * e + (1. - self.decay) * m)
def set(self, model):
self._update(model, update_fn=lambda e, m: m)
def state_dict(self, destination=None, prefix='', keep_vars=False):
return self.model_state_dict
if __name__ == "__main__":
hps = utils.get_hparams()
logger_text = utils.get_logger(hps.model_dir)
logger_text.info(hps)
out_size = fix_len_compatibility(2 * hps.data.sampling_rate // hps.data.hop_length) # NOTE: 2-sec of mel-spec
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.manual_seed(hps.train.seed)
np.random.seed(hps.train.seed)
print('Initializing logger...')
log_dir = hps.model_dir
logger = SummaryWriter(log_dir=log_dir)
train_dataset, collate, model = utils.get_correct_class(hps)
test_dataset, _, _ = utils.get_correct_class(hps, train=False)
print('Initializing data loaders...')
batch_collate = collate
loader = DataLoader(dataset=train_dataset, batch_size=hps.train.batch_size,
collate_fn=batch_collate, drop_last=True,
num_workers=4, shuffle=False) # NOTE: if on server, worker can be 4
print('Initializing model...')
model = model(**hps.model).to(device)
print('Number of encoder + duration predictor parameters: %.2fm' % (model.encoder.nparams / 1e6))
print('Number of decoder parameters: %.2fm' % (model.decoder.nparams / 1e6))
print('Total parameters: %.2fm' % (model.nparams / 1e6))
use_gt_dur = getattr(hps.train, "use_gt_dur", False)
if use_gt_dur:
print("++++++++++++++> Using ground truth duration for training")
print('Initializing optimizer...')
optimizer = torch.optim.Adam(params=model.parameters(), lr=hps.train.learning_rate)
print('Logging test batch...')
test_batch = test_dataset.sample_test_batch(size=hps.train.test_size)
for i, item in enumerate(test_batch):
mel = item['mel']
logger.add_image(f'image_{i}/ground_truth', plot_tensor(mel.squeeze()),
global_step=0, dataformats='HWC')
save_plot(mel.squeeze(), f'{log_dir}/original_{i}.png')
try:
model, optimizer, learning_rate, epoch_logged = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "grad_*.pt"), model, optimizer)
epoch_start = epoch_logged + 1
print(f"Loaded checkpoint from {epoch_logged} epoch, resuming training.")
global_step = epoch_logged * (len(train_dataset)/hps.train.batch_size)
except:
print(f"Cannot find trained checkpoint, begin to train from scratch")
epoch_start = 1
global_step = 0
learning_rate = hps.train.learning_rate
ema_model = ModelEmaV2(model, decay=0.9999) # It's necessary that we put this after loading model.
print('Start training...')
used_items = set()
iteration = global_step
for epoch in range(epoch_start, hps.train.n_epochs + 1):
model.train()
dur_losses = []
prior_losses = []
diff_losses = []
with tqdm(loader, total=len(train_dataset) // hps.train.batch_size) as progress_bar:
for batch_idx, batch in enumerate(progress_bar):
model.zero_grad()
x, x_lengths = batch['text_padded'].to(device), \
batch['input_lengths'].to(device)
y, y_lengths = batch['mel_padded'].to(device), \
batch['output_lengths'].to(device)
if hps.xvector:
spk = batch['xvector'].to(device)
else:
spk = batch['spk_ids'].to(torch.long).to(device)
emo = batch['emo_ids'].to(torch.long).to(device)
dur_loss, prior_loss, diff_loss = model.compute_loss(x, x_lengths,
y, y_lengths,
spk=spk,
emo=emo,
out_size=out_size,
use_gt_dur=use_gt_dur,
durs=batch['dur_padded'].to(device) if use_gt_dur else None)
loss = sum([dur_loss, prior_loss, diff_loss])
loss.backward()
enc_grad_norm = torch.nn.utils.clip_grad_norm_(model.encoder.parameters(),
max_norm=1)
dec_grad_norm = torch.nn.utils.clip_grad_norm_(model.decoder.parameters(),
max_norm=1)
optimizer.step()
ema_model.update(model)
logger.add_scalar('training/duration_loss', dur_loss.item(),
global_step=iteration)
logger.add_scalar('training/prior_loss', prior_loss.item(),
global_step=iteration)
logger.add_scalar('training/diffusion_loss', diff_loss.item(),
global_step=iteration)
logger.add_scalar('training/encoder_grad_norm', enc_grad_norm,
global_step=iteration)
logger.add_scalar('training/decoder_grad_norm', dec_grad_norm,
global_step=iteration)
dur_losses.append(dur_loss.item())
prior_losses.append(prior_loss.item())
diff_losses.append(diff_loss.item())
if batch_idx % 5 == 0:
msg = f'Epoch: {epoch}, iteration: {iteration} | dur_loss: {dur_loss.item()}, prior_loss: {prior_loss.item()}, diff_loss: {diff_loss.item()}'
progress_bar.set_description(msg)
iteration += 1
log_msg = 'Epoch %d: duration loss = %.3f ' % (epoch, float(np.mean(dur_losses)))
log_msg += '| prior loss = %.3f ' % np.mean(prior_losses)
log_msg += '| diffusion loss = %.3f\n' % np.mean(diff_losses)
with open(f'{log_dir}/train.log', 'a') as f:
f.write(log_msg)
if epoch % hps.train.save_every > 0:
continue
model.eval()
print('Synthesis...')
with torch.no_grad():
for i, item in enumerate(test_batch):
if item['utt'] + "/truth" not in used_items:
used_items.add(item['utt'] + "/truth")
x = item['text'].to(torch.long).unsqueeze(0).to(device)
if not hps.xvector:
spk = item['spk_ids']
spk = torch.LongTensor([spk]).to(device)
else:
spk = item["xvector"]
spk = spk.unsqueeze(0).to(device)
emo = item['emo_ids']
emo = torch.LongTensor([emo]).to(device)
x_lengths = torch.LongTensor([x.shape[-1]]).to(device)
y_enc, y_dec, attn = model(x, x_lengths, spk=spk, emo=emo, n_timesteps=10)
logger.add_image(f'image_{i}/generated_enc',
plot_tensor(y_enc.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
logger.add_image(f'image_{i}/generated_dec',
plot_tensor(y_dec.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
logger.add_image(f'image_{i}/alignment',
plot_tensor(attn.squeeze().cpu()),
global_step=iteration, dataformats='HWC')
save_plot(y_enc.squeeze().cpu(),
f'{log_dir}/generated_enc_{i}.png')
save_plot(y_dec.squeeze().cpu(),
f'{log_dir}/generated_dec_{i}.png')
save_plot(attn.squeeze().cpu(),
f'{log_dir}/alignment_{i}.png')
ckpt = model.state_dict()
utils.save_checkpoint(ema_model, optimizer, learning_rate, epoch, checkpoint_path=f"{log_dir}/EMA_grad_{epoch}.pt")
utils.save_checkpoint(model, optimizer, learning_rate, epoch, checkpoint_path=f"{log_dir}/grad_{epoch}.pt")