Spaces:
Runtime error
Runtime error
""" from https://github.com/keithito/tacotron """ | |
import re | |
from text import cleaners | |
from text.symbols import symbols | |
import torch | |
_symbol_to_id = {s: i for i, s in enumerate(symbols)} | |
_id_to_symbol = {i: s for i, s in enumerate(symbols)} | |
_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)') | |
def get_arpabet(word, dictionary): | |
word_arpabet = dictionary.lookup(word) | |
if word_arpabet is not None: | |
return "{" + word_arpabet[0] + "}" | |
else: | |
return word | |
def text_to_sequence(text, cleaner_names=["kazakh_cleaners"], dictionary=None): | |
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. | |
The text can optionally have ARPAbet sequences enclosed in curly braces embedded | |
in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street." | |
Args: | |
text: string to convert to a sequence | |
cleaner_names: names of the cleaner functions to run the text through | |
dictionary: arpabet class with arpabet dictionary | |
Returns: | |
List of integers corresponding to the symbols in the text | |
''' | |
sequence = [] | |
space = _symbols_to_sequence(' ') | |
# Check for curly braces and treat their contents as ARPAbet: | |
while len(text): | |
m = _curly_re.match(text) | |
if not m: | |
clean_text = _clean_text(text, cleaner_names) | |
#clean_text = text | |
if dictionary is not None: | |
clean_text = [get_arpabet(w, dictionary) for w in clean_text.split(" ")] | |
for i in range(len(clean_text)): | |
t = clean_text[i] | |
if t.startswith("{"): | |
sequence += _arpabet_to_sequence(t[1:-1]) | |
else: | |
sequence += _symbols_to_sequence(t) | |
sequence += space | |
else: | |
sequence += _symbols_to_sequence(clean_text) | |
break | |
sequence += _symbols_to_sequence(_clean_text(m.group(1), cleaner_names)) | |
sequence += _arpabet_to_sequence(m.group(2)) | |
text = m.group(3) | |
# remove trailing space | |
if dictionary is not None: | |
sequence = sequence[:-1] if sequence[-1] == space[0] else sequence | |
return sequence | |
def sequence_to_text(sequence): | |
'''Converts a sequence of IDs back to a string''' | |
result = '' | |
for symbol_id in sequence: | |
if symbol_id in _id_to_symbol: | |
s = _id_to_symbol[symbol_id] | |
# Enclose ARPAbet back in curly braces: | |
if len(s) > 1 and s[0] == '@': | |
s = '{%s}' % s[1:] | |
result += s | |
return result.replace('}{', ' ') | |
def convert_text(string): | |
text_norm = text_to_sequence(string.lower()) | |
text_norm = torch.IntTensor(text_norm) | |
text_len = torch.IntTensor([text_norm.size(0)]) | |
text_padded = torch.LongTensor(1, len(text_norm)) | |
text_padded.zero_() | |
text_padded[0, :text_norm.size(0)] = text_norm | |
return text_padded, text_len | |
def _clean_text(text, cleaner_names): | |
for name in cleaner_names: | |
cleaner = getattr(cleaners, name) | |
if not cleaner: | |
raise Exception('Unknown cleaner: %s' % name) | |
text = cleaner(text) | |
return text | |
def _symbols_to_sequence(symbols): | |
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)] | |
def _arpabet_to_sequence(text): | |
return _symbols_to_sequence(['@' + s for s in text.split()]) | |
def _should_keep_symbol(s): | |
return s in _symbol_to_id and s != '_' and s != '~' | |