AdalAbilbekov's picture
First commit
ae8e1dd
raw
history blame contribute delete
No virus
23.4 kB
import math
import torch
from einops import rearrange
from model.base import BaseModule
class Mish(BaseModule):
def forward(self, x):
return x * torch.tanh(torch.nn.functional.softplus(x))
class Upsample(BaseModule):
def __init__(self, dim):
super(Upsample, self).__init__()
self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
def forward(self, x):
return self.conv(x)
class Downsample(BaseModule):
def __init__(self, dim):
super(Downsample, self).__init__()
self.conv = torch.nn.Conv2d(dim, dim, 3, 2, 1) # kernel=3, stride=2, padding=1.
def forward(self, x):
return self.conv(x)
class Rezero(BaseModule):
def __init__(self, fn):
super(Rezero, self).__init__()
self.fn = fn
self.g = torch.nn.Parameter(torch.zeros(1))
def forward(self, x):
return self.fn(x) * self.g
class Block(BaseModule):
def __init__(self, dim, dim_out, groups=8):
super(Block, self).__init__()
self.block = torch.nn.Sequential(torch.nn.Conv2d(dim, dim_out, 3,
padding=1), torch.nn.GroupNorm(
groups, dim_out), Mish())
def forward(self, x, mask):
output = self.block(x * mask)
return output * mask
class ResnetBlock(BaseModule):
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
super(ResnetBlock, self).__init__()
self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim,
dim_out))
self.block1 = Block(dim, dim_out, groups=groups)
self.block2 = Block(dim_out, dim_out, groups=groups)
if dim != dim_out:
self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
else:
self.res_conv = torch.nn.Identity()
def forward(self, x, mask, time_emb):
h = self.block1(x, mask)
h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
h = self.block2(h, mask)
output = h + self.res_conv(x * mask)
return output
class LinearAttention(BaseModule):
def __init__(self, dim, heads=4, dim_head=32):
super(LinearAttention, self).__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) # NOTE: 1x1 conv
self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads=self.heads, qkv=3)
k = k.softmax(dim=-1)
context = torch.einsum('bhdn,bhen->bhde', k, v)
out = torch.einsum('bhde,bhdn->bhen', context, q)
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w',
heads=self.heads, h=h, w=w)
return self.to_out(out)
class Residual(BaseModule):
def __init__(self, fn):
super(Residual, self).__init__()
self.fn = fn
def forward(self, x, *args, **kwargs):
output = self.fn(x, *args, **kwargs) + x
return output
class SinusoidalPosEmb(BaseModule):
def __init__(self, dim):
super(SinusoidalPosEmb, self).__init__()
self.dim = dim
def forward(self, x, scale=1000):
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class GradLogPEstimator2d(BaseModule):
def __init__(self, dim, dim_mults=(1, 2, 4), groups=8, spk_emb_dim=64, n_feats=80, pe_scale=1000):
super(GradLogPEstimator2d, self).__init__()
self.dim = dim
self.dim_mults = dim_mults
self.groups = groups
self.spk_emb_dim = spk_emb_dim
self.pe_scale = pe_scale
self.spk_mlp = torch.nn.Sequential(torch.nn.Linear(spk_emb_dim, spk_emb_dim * 4), Mish(),
torch.nn.Linear(spk_emb_dim * 4, n_feats))
self.time_pos_emb = SinusoidalPosEmb(dim)
self.mlp = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), Mish(),
torch.nn.Linear(dim * 4, dim))
dims = [3, *map(lambda m: dim * m, dim_mults)]
in_out = list(zip(dims[:-1], dims[1:]))
self.downs = torch.nn.ModuleList([])
self.ups = torch.nn.ModuleList([])
num_resolutions = len(in_out)
for ind, (dim_in, dim_out) in enumerate(in_out):
is_last = ind >= (num_resolutions - 1)
self.downs.append(torch.nn.ModuleList([
ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
Residual(Rezero(LinearAttention(dim_out))),
Downsample(dim_out) if not is_last else torch.nn.Identity()]))
mid_dim = dims[-1]
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
self.ups.append(torch.nn.ModuleList([
ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
Residual(Rezero(LinearAttention(dim_in))),
Upsample(dim_in)]))
self.final_block = Block(dim, dim)
self.final_conv = torch.nn.Conv2d(dim, 1, 1)
def forward(self, x, mask, mu, t, spk=None):
# x, mu: [B, 80, L], t: [B, ], mask: [B, 1, L]
if not isinstance(spk, type(None)):
s = self.spk_mlp(spk)
t = self.time_pos_emb(t, scale=self.pe_scale)
t = self.mlp(t) # [B, 64]
s = s.unsqueeze(-1).repeat(1, 1, x.shape[-1])
x = torch.stack([mu, x, s], 1) # [B, 3, 80, L]
mask = mask.unsqueeze(1) # [B, 1, 1, L]
hiddens = []
masks = [mask]
for resnet1, resnet2, attn, downsample in self.downs:
mask_down = masks[-1]
x = resnet1(x, mask_down, t) # [B, 64, 80, L]
x = resnet2(x, mask_down, t)
x = attn(x)
hiddens.append(x)
x = downsample(x * mask_down)
masks.append(mask_down[:, :, :, ::2])
masks = masks[:-1]
mask_mid = masks[-1]
x = self.mid_block1(x, mask_mid, t)
x = self.mid_attn(x)
x = self.mid_block2(x, mask_mid, t)
for resnet1, resnet2, attn, upsample in self.ups:
mask_up = masks.pop()
x = torch.cat((x, hiddens.pop()), dim=1)
x = resnet1(x, mask_up, t)
x = resnet2(x, mask_up, t)
x = attn(x)
x = upsample(x * mask_up)
x = self.final_block(x, mask)
output = self.final_conv(x * mask)
return (output * mask).squeeze(1)
def get_noise(t, beta_init, beta_term, cumulative=False):
if cumulative:
noise = beta_init*t + 0.5*(beta_term - beta_init)*(t**2)
else:
noise = beta_init + (beta_term - beta_init)*t
return noise
class Diffusion(BaseModule):
def __init__(self, n_feats, dim, spk_emb_dim=64,
beta_min=0.05, beta_max=20, pe_scale=1000):
super(Diffusion, self).__init__()
self.n_feats = n_feats
self.dim = dim
# self.n_spks = n_spks
self.spk_emb_dim = spk_emb_dim
self.beta_min = beta_min
self.beta_max = beta_max
self.pe_scale = pe_scale
self.estimator = GradLogPEstimator2d(dim,
spk_emb_dim=spk_emb_dim,
pe_scale=pe_scale,
n_feats=n_feats)
def forward_diffusion(self, x0, mask, mu, t):
time = t.unsqueeze(-1).unsqueeze(-1)
cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True) # it is actually the integral of beta
mean = x0*torch.exp(-0.5*cum_noise) + mu*(1.0 - torch.exp(-0.5*cum_noise))
variance = 1.0 - torch.exp(-cum_noise)
z = torch.randn(x0.shape, dtype=x0.dtype, device=x0.device,
requires_grad=False)
xt = mean + z * torch.sqrt(variance)
return xt * mask, z * mask
@torch.no_grad()
def reverse_diffusion(self, z, mask, mu, n_timesteps, stoc=False, spk=None,
use_classifier_free=False,
classifier_free_guidance=3.0,
dummy_spk=None): # emo need to be merged by spk
# looks like a plain Euler-Maruyama method
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5)*h) * torch.ones(z.shape[0], dtype=z.dtype,
device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max,
cumulative=False)
if not use_classifier_free:
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk)
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk))
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
else:
if stoc: # adds stochastic term
score_estimate = (1 + classifier_free_guidance) * self.estimator(xt, mask, mu, t, spk) \
- classifier_free_guidance * self.estimator(xt, mask, mu, t, dummy_spk)
dxt_det = 0.5 * (mu - xt) - score_estimate
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
score_estimate = (1 + classifier_free_guidance) * self.estimator(xt, mask, mu, t, spk) \
- classifier_free_guidance * self.estimator(xt, mask, mu, t, dummy_spk)
dxt = 0.5 * (mu - xt - score_estimate)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt
@torch.no_grad()
def forward(self, z, mask, mu, n_timesteps, stoc=False, spk=None,
use_classifier_free=False,
classifier_free_guidance=3.0,
dummy_spk=None
):
return self.reverse_diffusion(z, mask, mu, n_timesteps, stoc, spk, use_classifier_free, classifier_free_guidance, dummy_spk)
def loss_t(self, x0, mask, mu, t, spk=None):
xt, z = self.forward_diffusion(x0, mask, mu, t) # z is sampled from N(0, I)
time = t.unsqueeze(-1).unsqueeze(-1)
cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
noise_estimation = self.estimator(xt, mask, mu, t, spk)
noise_estimation *= torch.sqrt(1.0 - torch.exp(-cum_noise)) # multiply by lambda which is set to be variance
# actually multiplied by sqrt(lambda), but not lambda
# NOTE: here use a trick to put lambda into L2 norm so that don't divide z with std.
loss = torch.sum((noise_estimation + z)**2) / (torch.sum(mask)*self.n_feats)
return loss, xt
def compute_loss(self, x0, mask, mu, spk=None, offset=1e-5):
t = torch.rand(x0.shape[0], dtype=x0.dtype, device=x0.device,
requires_grad=False)
t = torch.clamp(t, offset, 1.0 - offset)
return self.loss_t(x0, mask, mu, t, spk)
def classifier_decode(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo=None, classifier_type="conformer"):
# control_emo should be [B, ] tensor
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype,
device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max,
cumulative=False)
# =========== classifier part ==============
xt = xt.detach()
xt.requires_grad_(True)
if classifier_type == 'CNN-with-time':
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1), t=t)
else:
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
if classifier_type == 'conformer': # [B, C]
probs = torch.log_softmax(logits, dim=-1) # [B, C]
elif classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
probs = torch.log(probs_mean)
else:
raise NotImplementedError
control_emo_probs = probs[torch.arange(len(control_emo)).to(control_emo.device), control_emo]
control_emo_probs.sum().backward(retain_graph=True)
# NOTE: sum is to treat all the components as the same weight.
xt_grad = xt.grad
# ==========================================
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt
def classifier_decode_DPS(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo=None, classifier_type="conformer"):
# control_emo should be [B, ] tensor
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype, device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max, cumulative=False)
beta_integral_t = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
bar_alpha_t = math.exp(-beta_integral_t)
# =========== classifier part ==============
xt = xt.detach()
xt.requires_grad_(True)
score_estimate = self.estimator(xt, mask, mu, t, spk)
x0_hat = (xt + (1-bar_alpha_t) * score_estimate) / math.sqrt(bar_alpha_t)
if classifier_type == 'CNN-with-time':
raise NotImplementedError
else:
logits = classifier_func(x0_hat.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
if classifier_type == 'conformer': # [B, C]
probs = torch.log_softmax(logits, dim=-1) # [B, C]
elif classifier_type == 'CNN':
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
probs_mean = probs_mean + 10E-10
# NOTE: at the first few steps, x0 may be very large. Then the classifier output logits will also have extreme value range.
#
probs = torch.log(probs_mean)
else:
raise NotImplementedError
control_emo_probs = probs[torch.arange(len(control_emo)).to(control_emo.device), control_emo]
control_emo_probs.sum().backward(retain_graph=True)
# NOTE: sum is to treat all the components as the same weight.
xt_grad = xt.grad
# ==========================================
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - score_estimate - guidance * xt_grad
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device, requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - score_estimate - guidance * xt_grad)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt
def classifier_decode_mixture(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo1=None,control_emo2=None, emo1_weight=None, classifier_type="conformer"):
# control_emo should be [B, ] tensor
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype,
device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max,
cumulative=False)
# =========== classifier part ==============
xt = xt.detach()
xt.requires_grad_(True)
if classifier_type == 'CNN-with-time':
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1), t=t)
else:
logits = classifier_func(xt.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
if classifier_type == 'conformer': # [B, C]
probs = torch.log_softmax(logits, dim=-1) # [B, C]
elif classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
probs = torch.log(probs_mean)
else:
raise NotImplementedError
control_emo_probs1 = probs[torch.arange(len(control_emo1)).to(control_emo1.device), control_emo1]
control_emo_probs2 = probs[torch.arange(len(control_emo2)).to(control_emo2.device), control_emo2]
control_emo_probs = control_emo_probs1 * emo1_weight + control_emo_probs2 * (1-emo1_weight) # interpolate
control_emo_probs.sum().backward(retain_graph=True)
# NOTE: sum is to treat all the components as the same weight.
xt_grad = xt.grad
# ==========================================
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk) - guidance * xt_grad)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt
def classifier_decode_mixture_DPS(self, z, mask, mu, n_timesteps, stoc=False, spk=None, classifier_func=None, guidance=1.0, control_emo1=None,control_emo2=None, emo1_weight=None, classifier_type="conformer"):
# control_emo should be [B, ] tensor
h = 1.0 / n_timesteps
xt = z * mask
for i in range(n_timesteps):
t = (1.0 - (i + 0.5) * h) * torch.ones(z.shape[0], dtype=z.dtype,
device=z.device)
time = t.unsqueeze(-1).unsqueeze(-1)
noise_t = get_noise(time, self.beta_min, self.beta_max,
cumulative=False)
beta_integral_t = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
bar_alpha_t = math.exp(-beta_integral_t)
# =========== classifier part ==============
xt = xt.detach()
xt.requires_grad_(True)
score_estimate = self.estimator(xt, mask, mu, t, spk)
x0_hat = (xt + (1 - bar_alpha_t) * score_estimate) / math.sqrt(bar_alpha_t)
if classifier_type == 'CNN-with-time':
raise NotImplementedError
else:
logits = classifier_func(x0_hat.transpose(1, 2), mu.transpose(1, 2), (mask == 1.0).squeeze(1))
if classifier_type == 'conformer': # [B, C]
probs = torch.log_softmax(logits, dim=-1) # [B, C]
elif classifier_type == 'CNN' or classifier_type == 'CNN-with-time' :
probs_every_place = torch.softmax(logits, dim=-1) # [B, T', C]
probs_mean = torch.mean(probs_every_place, dim=1) # [B, C]
probs_mean = probs_mean + 10E-10
probs = torch.log(probs_mean)
else:
raise NotImplementedError
control_emo_probs1 = probs[torch.arange(len(control_emo1)).to(control_emo1.device), control_emo1]
control_emo_probs2 = probs[torch.arange(len(control_emo2)).to(control_emo2.device), control_emo2]
control_emo_probs = control_emo_probs1 * emo1_weight + control_emo_probs2 * (1-emo1_weight) # interpolate
control_emo_probs.sum().backward(retain_graph=True)
# NOTE: sum is to treat all the components as the same weight.
xt_grad = xt.grad
# ==========================================
if stoc: # adds stochastic term
dxt_det = 0.5 * (mu - xt) - score_estimate - guidance * xt_grad
dxt_det = dxt_det * noise_t * h
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
requires_grad=False)
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
dxt = dxt_det + dxt_stoc
else:
dxt = 0.5 * (mu - xt - score_estimate - guidance * xt_grad)
dxt = dxt * noise_t * h
xt = (xt - dxt) * mask
return xt