File size: 10,852 Bytes
c05d22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a91347
c05d22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a91347
 
 
d4cb576
 
 
 
 
 
 
9a91347
 
 
 
 
 
2cc9425
 
 
 
 
9a91347
 
 
c05d22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a91347
c05d22e
9a91347
c05d22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
825452e
c05d22e
864f20a
825452e
 
864f20a
 
c05d22e
 
 
 
 
 
 
 
 
 
 
9f18fac
 
 
c05d22e
 
 
 
9f18fac
 
 
 
 
 
 
c05d22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308f037
c05d22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f4f157
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# demo inspired by https://huggingface.co/spaces/lambdalabs/image-mixer-demo
import argparse
import copy
import gradio as gr
import torch
from functools import partial
from itertools import chain
from torch import autocast
from pytorch_lightning import seed_everything

from basicsr.utils import tensor2img
from ldm.inference_base import DEFAULT_NEGATIVE_PROMPT, diffusion_inference, get_adapters, get_sd_models
from ldm.modules.extra_condition import api
from ldm.modules.extra_condition.api import ExtraCondition, get_cond_model
from ldm.modules.encoders.adapter import CoAdapterFuser
import os
from huggingface_hub import hf_hub_url
import subprocess
import shlex
import cv2

torch.set_grad_enabled(False)

urls = {
    'TencentARC/T2I-Adapter':[
        'third-party-models/body_pose_model.pth', 'third-party-models/table5_pidinet.pth',
        'models/coadapter-canny-sd15v1.pth',
        'models/coadapter-color-sd15v1.pth',
        'models/coadapter-sketch-sd15v1.pth',
        'models/coadapter-style-sd15v1.pth',
        'models/coadapter-depth-sd15v1.pth',
        'models/coadapter-fuser-sd15v1.pth',

    ],
    'runwayml/stable-diffusion-v1-5': ['v1-5-pruned-emaonly.ckpt'],
    'andite/anything-v4.0': ['anything-v4.5-pruned.ckpt', 'anything-v4.0.vae.pt'],
}

if os.path.exists('models') == False:
    os.mkdir('models')
for repo in urls:
    files = urls[repo]
    for file in files:
        url = hf_hub_url(repo, file)
        name_ckp = url.split('/')[-1]
        save_path = os.path.join('models',name_ckp)
        if os.path.exists(save_path) == False:
            subprocess.run(shlex.split(f'wget {url} -O {save_path}'))

supported_cond = ['style', 'color', 'sketch', 'depth', 'canny']

# config
parser = argparse.ArgumentParser()
parser.add_argument(
    '--sd_ckpt',
    type=str,
    default='models/v1-5-pruned-emaonly.ckpt',
    help='path to checkpoint of stable diffusion model, both .ckpt and .safetensor are supported',
)
parser.add_argument(
    '--vae_ckpt',
    type=str,
    default=None,
    help='vae checkpoint, anime SD models usually have seperate vae ckpt that need to be loaded',
)
global_opt = parser.parse_args()
global_opt.config = 'configs/stable-diffusion/sd-v1-inference.yaml'
for cond_name in supported_cond:
    setattr(global_opt, f'{cond_name}_adapter_ckpt', f'models/coadapter-{cond_name}-sd15v1.pth')
global_opt.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
global_opt.max_resolution = 512 * 512
global_opt.sampler = 'ddim'
global_opt.cond_weight = 1.0
global_opt.C = 4
global_opt.f = 8
#TODO: expose style_cond_tau to users
global_opt.style_cond_tau = 1.0

# stable-diffusion model
sd_model, sampler = get_sd_models(global_opt)
# adapters and models to processing condition inputs
adapters = {}
cond_models = {}

torch.cuda.empty_cache()

# fuser is indispensable
coadapter_fuser = CoAdapterFuser(unet_channels=[320, 640, 1280, 1280], width=768, num_head=8, n_layes=3)
coadapter_fuser.load_state_dict(torch.load(f'models/coadapter-fuser-sd15v1.pth'))
coadapter_fuser = coadapter_fuser.to(global_opt.device)


def run(*args):
    with torch.inference_mode(), \
            sd_model.ema_scope(), \
            autocast('cuda'):

        inps = []
        for i in range(0, len(args) - 8, len(supported_cond)):
            inps.append(args[i:i + len(supported_cond)])

        opt = copy.deepcopy(global_opt)
        opt.prompt, opt.neg_prompt, opt.scale, opt.n_samples, opt.seed, opt.steps, opt.resize_short_edge, opt.cond_tau \
            = args[-8:]

        ims1 = []
        ims2 = []
        for idx, (b, im1, im2, cond_weight) in enumerate(zip(*inps)):
            if idx > 0:
                if b != 'Nothing' and (im1 is not None or im2 is not None):
                    if im1 is not None:
                        h, w, _ = im1.shape
                    else:
                        h, w, _ = im2.shape
                # break
        # resize all the images to the same size
        for idx, (b, im1, im2, cond_weight) in enumerate(zip(*inps)):
            if idx == 0:
                ims1.append(im1)
                ims2.append(im2)
                continue
            if b != 'Nothing':
                if im1 is not None:
                    im1 = cv2.resize(im1, (w, h), interpolation=cv2.INTER_CUBIC)
                if im2 is not None:
                    im2 = cv2.resize(im2, (w, h), interpolation=cv2.INTER_CUBIC)
            ims1.append(im1)
            ims2.append(im2)

        conds = []
        activated_conds = []
        for idx, (b, im1, im2, cond_weight) in enumerate(zip(*inps)):
            cond_name = supported_cond[idx]
            if b == 'Nothing':
                if cond_name in adapters:
                    adapters[cond_name]['model'] = adapters[cond_name]['model'].cpu()
            else:
                activated_conds.append(cond_name)
                if cond_name in adapters:
                    adapters[cond_name]['model'] = adapters[cond_name]['model'].to(opt.device)
                else:
                    adapters[cond_name] = get_adapters(opt, getattr(ExtraCondition, cond_name))
                adapters[cond_name]['cond_weight'] = cond_weight

                process_cond_module = getattr(api, f'get_cond_{cond_name}')

                if b == 'Image':
                    if cond_name not in cond_models:
                        cond_models[cond_name] = get_cond_model(opt, getattr(ExtraCondition, cond_name))
                    conds.append(process_cond_module(opt, ims1[idx], 'image', cond_models[cond_name]))
                else:
                    conds.append(process_cond_module(opt, ims2[idx], cond_name, None))

        features = dict()
        for idx, cond_name in enumerate(activated_conds):
            cur_feats = adapters[cond_name]['model'](conds[idx])
            if isinstance(cur_feats, list):
                for i in range(len(cur_feats)):
                    cur_feats[i] *= adapters[cond_name]['cond_weight']
            else:
                cur_feats *= adapters[cond_name]['cond_weight']
            features[cond_name] = cur_feats

        adapter_features, append_to_context = coadapter_fuser(features)

        output_conds = []
        for cond in conds:
            output_conds.append(tensor2img(cond, rgb2bgr=False))

        ims = []
        seed_everything(opt.seed)
        for _ in range(opt.n_samples):
            result = diffusion_inference(opt, sd_model, sampler, adapter_features, append_to_context)
            ims.append(tensor2img(result, rgb2bgr=False))

        # Clear GPU memory cache so less likely to OOM
        torch.cuda.empty_cache()
        return ims, output_conds


def change_visible(im1, im2, val):
    outputs = {}
    if val == "Image":
        outputs[im1] = gr.update(visible=True)
        outputs[im2] = gr.update(visible=False)
    elif val == "Nothing":
        outputs[im1] = gr.update(visible=False)
        outputs[im2] = gr.update(visible=False)
    else:
        outputs[im1] = gr.update(visible=False)
        outputs[im2] = gr.update(visible=True)
    return outputs


DESCRIPTION = '# [CoAdapter (Composable Adapter)](https://github.com/TencentARC/T2I-Adapter)'

DESCRIPTION += f'<p>Gradio demo for **CoAdapter**: [[GitHub]](https://github.com/TencentARC/T2I-Adapter), [[Details]](https://github.com/TencentARC/T2I-Adapter/blob/main/docs/coadapter.md). If CoAdapter is helpful, please help to ⭐ the [Github Repo](https://github.com/TencentARC/T2I-Adapter) and recommend it to your friends 😊 </p>'

DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/Adapter/T2I-Adapter?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
# with gr.Blocks(title="CoAdapter", css=".gr-box {border-color: #8136e2}") as demo:
with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)

    btns = []
    ims1 = []
    ims2 = []
    cond_weights = []

    with gr.Row():
        for cond_name in supported_cond:
            with gr.Box():
                with gr.Column():
                    if cond_name == 'style':
                        btn1 = gr.Radio(
                        choices=["Image", "Nothing"],
                        label=f"Input type for {cond_name}",
                        interactive=True,
                        value="Nothing",
                    )
                    else:
                        btn1 = gr.Radio(
                            choices=["Image", cond_name, "Nothing"],
                            label=f"Input type for {cond_name}",
                            interactive=True,
                            value="Nothing",
                        )
                    im1 = gr.Image(source='upload', label="Image", interactive=True, visible=False, type="numpy")
                    im2 = gr.Image(source='upload', label=cond_name, interactive=True, visible=False, type="numpy")
                    cond_weight = gr.Slider(
                        label="Condition weight", minimum=0, maximum=5, step=0.05, value=1, interactive=True)

                    fn = partial(change_visible, im1, im2)
                    btn1.change(fn=fn, inputs=[btn1], outputs=[im1, im2], queue=False)

                    btns.append(btn1)
                    ims1.append(im1)
                    ims2.append(im2)
                    cond_weights.append(cond_weight)

    with gr.Column():
        prompt = gr.Textbox(label="Prompt")
        neg_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT)
        scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", value=7.5, minimum=1, maximum=20, step=0.1)
        n_samples = gr.Slider(label="Num samples", value=1, minimum=1, maximum=1, step=1)
        seed = gr.Slider(label="Seed", value=42, minimum=0, maximum=10000, step=1)
        steps = gr.Slider(label="Steps", value=50, minimum=10, maximum=100, step=1)
        resize_short_edge = gr.Slider(label="Image resolution", value=512, minimum=320, maximum=1024, step=1)
        cond_tau = gr.Slider(
            label="timestamp parameter that determines until which step the adapter is applied",
            value=1.0,
            minimum=0.1,
            maximum=1.0,
            step=0.05)

    with gr.Row():
        submit = gr.Button("Generate")
    output = gr.Gallery().style(grid=2, height='auto')
    cond = gr.Gallery().style(grid=2, height='auto')

    inps = list(chain(btns, ims1, ims2, cond_weights))
    inps.extend([prompt, neg_prompt, scale, n_samples, seed, steps, resize_short_edge, cond_tau])
    submit.click(fn=run, inputs=inps, outputs=[output, cond])
# demo.launch()
demo.queue().launch(debug=True, server_name='0.0.0.0')