Spaces:
Runtime error
Runtime error
File size: 10,852 Bytes
c05d22e 9a91347 c05d22e 9a91347 d4cb576 9a91347 2cc9425 9a91347 c05d22e 9a91347 c05d22e 9a91347 c05d22e 825452e c05d22e 864f20a 825452e 864f20a c05d22e 9f18fac c05d22e 9f18fac c05d22e 308f037 c05d22e 0f4f157 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
# demo inspired by https://huggingface.co/spaces/lambdalabs/image-mixer-demo
import argparse
import copy
import gradio as gr
import torch
from functools import partial
from itertools import chain
from torch import autocast
from pytorch_lightning import seed_everything
from basicsr.utils import tensor2img
from ldm.inference_base import DEFAULT_NEGATIVE_PROMPT, diffusion_inference, get_adapters, get_sd_models
from ldm.modules.extra_condition import api
from ldm.modules.extra_condition.api import ExtraCondition, get_cond_model
from ldm.modules.encoders.adapter import CoAdapterFuser
import os
from huggingface_hub import hf_hub_url
import subprocess
import shlex
import cv2
torch.set_grad_enabled(False)
urls = {
'TencentARC/T2I-Adapter':[
'third-party-models/body_pose_model.pth', 'third-party-models/table5_pidinet.pth',
'models/coadapter-canny-sd15v1.pth',
'models/coadapter-color-sd15v1.pth',
'models/coadapter-sketch-sd15v1.pth',
'models/coadapter-style-sd15v1.pth',
'models/coadapter-depth-sd15v1.pth',
'models/coadapter-fuser-sd15v1.pth',
],
'runwayml/stable-diffusion-v1-5': ['v1-5-pruned-emaonly.ckpt'],
'andite/anything-v4.0': ['anything-v4.5-pruned.ckpt', 'anything-v4.0.vae.pt'],
}
if os.path.exists('models') == False:
os.mkdir('models')
for repo in urls:
files = urls[repo]
for file in files:
url = hf_hub_url(repo, file)
name_ckp = url.split('/')[-1]
save_path = os.path.join('models',name_ckp)
if os.path.exists(save_path) == False:
subprocess.run(shlex.split(f'wget {url} -O {save_path}'))
supported_cond = ['style', 'color', 'sketch', 'depth', 'canny']
# config
parser = argparse.ArgumentParser()
parser.add_argument(
'--sd_ckpt',
type=str,
default='models/v1-5-pruned-emaonly.ckpt',
help='path to checkpoint of stable diffusion model, both .ckpt and .safetensor are supported',
)
parser.add_argument(
'--vae_ckpt',
type=str,
default=None,
help='vae checkpoint, anime SD models usually have seperate vae ckpt that need to be loaded',
)
global_opt = parser.parse_args()
global_opt.config = 'configs/stable-diffusion/sd-v1-inference.yaml'
for cond_name in supported_cond:
setattr(global_opt, f'{cond_name}_adapter_ckpt', f'models/coadapter-{cond_name}-sd15v1.pth')
global_opt.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
global_opt.max_resolution = 512 * 512
global_opt.sampler = 'ddim'
global_opt.cond_weight = 1.0
global_opt.C = 4
global_opt.f = 8
#TODO: expose style_cond_tau to users
global_opt.style_cond_tau = 1.0
# stable-diffusion model
sd_model, sampler = get_sd_models(global_opt)
# adapters and models to processing condition inputs
adapters = {}
cond_models = {}
torch.cuda.empty_cache()
# fuser is indispensable
coadapter_fuser = CoAdapterFuser(unet_channels=[320, 640, 1280, 1280], width=768, num_head=8, n_layes=3)
coadapter_fuser.load_state_dict(torch.load(f'models/coadapter-fuser-sd15v1.pth'))
coadapter_fuser = coadapter_fuser.to(global_opt.device)
def run(*args):
with torch.inference_mode(), \
sd_model.ema_scope(), \
autocast('cuda'):
inps = []
for i in range(0, len(args) - 8, len(supported_cond)):
inps.append(args[i:i + len(supported_cond)])
opt = copy.deepcopy(global_opt)
opt.prompt, opt.neg_prompt, opt.scale, opt.n_samples, opt.seed, opt.steps, opt.resize_short_edge, opt.cond_tau \
= args[-8:]
ims1 = []
ims2 = []
for idx, (b, im1, im2, cond_weight) in enumerate(zip(*inps)):
if idx > 0:
if b != 'Nothing' and (im1 is not None or im2 is not None):
if im1 is not None:
h, w, _ = im1.shape
else:
h, w, _ = im2.shape
# break
# resize all the images to the same size
for idx, (b, im1, im2, cond_weight) in enumerate(zip(*inps)):
if idx == 0:
ims1.append(im1)
ims2.append(im2)
continue
if b != 'Nothing':
if im1 is not None:
im1 = cv2.resize(im1, (w, h), interpolation=cv2.INTER_CUBIC)
if im2 is not None:
im2 = cv2.resize(im2, (w, h), interpolation=cv2.INTER_CUBIC)
ims1.append(im1)
ims2.append(im2)
conds = []
activated_conds = []
for idx, (b, im1, im2, cond_weight) in enumerate(zip(*inps)):
cond_name = supported_cond[idx]
if b == 'Nothing':
if cond_name in adapters:
adapters[cond_name]['model'] = adapters[cond_name]['model'].cpu()
else:
activated_conds.append(cond_name)
if cond_name in adapters:
adapters[cond_name]['model'] = adapters[cond_name]['model'].to(opt.device)
else:
adapters[cond_name] = get_adapters(opt, getattr(ExtraCondition, cond_name))
adapters[cond_name]['cond_weight'] = cond_weight
process_cond_module = getattr(api, f'get_cond_{cond_name}')
if b == 'Image':
if cond_name not in cond_models:
cond_models[cond_name] = get_cond_model(opt, getattr(ExtraCondition, cond_name))
conds.append(process_cond_module(opt, ims1[idx], 'image', cond_models[cond_name]))
else:
conds.append(process_cond_module(opt, ims2[idx], cond_name, None))
features = dict()
for idx, cond_name in enumerate(activated_conds):
cur_feats = adapters[cond_name]['model'](conds[idx])
if isinstance(cur_feats, list):
for i in range(len(cur_feats)):
cur_feats[i] *= adapters[cond_name]['cond_weight']
else:
cur_feats *= adapters[cond_name]['cond_weight']
features[cond_name] = cur_feats
adapter_features, append_to_context = coadapter_fuser(features)
output_conds = []
for cond in conds:
output_conds.append(tensor2img(cond, rgb2bgr=False))
ims = []
seed_everything(opt.seed)
for _ in range(opt.n_samples):
result = diffusion_inference(opt, sd_model, sampler, adapter_features, append_to_context)
ims.append(tensor2img(result, rgb2bgr=False))
# Clear GPU memory cache so less likely to OOM
torch.cuda.empty_cache()
return ims, output_conds
def change_visible(im1, im2, val):
outputs = {}
if val == "Image":
outputs[im1] = gr.update(visible=True)
outputs[im2] = gr.update(visible=False)
elif val == "Nothing":
outputs[im1] = gr.update(visible=False)
outputs[im2] = gr.update(visible=False)
else:
outputs[im1] = gr.update(visible=False)
outputs[im2] = gr.update(visible=True)
return outputs
DESCRIPTION = '# [CoAdapter (Composable Adapter)](https://github.com/TencentARC/T2I-Adapter)'
DESCRIPTION += f'<p>Gradio demo for **CoAdapter**: [[GitHub]](https://github.com/TencentARC/T2I-Adapter), [[Details]](https://github.com/TencentARC/T2I-Adapter/blob/main/docs/coadapter.md). If CoAdapter is helpful, please help to β the [Github Repo](https://github.com/TencentARC/T2I-Adapter) and recommend it to your friends π </p>'
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/Adapter/T2I-Adapter?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
# with gr.Blocks(title="CoAdapter", css=".gr-box {border-color: #8136e2}") as demo:
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
btns = []
ims1 = []
ims2 = []
cond_weights = []
with gr.Row():
for cond_name in supported_cond:
with gr.Box():
with gr.Column():
if cond_name == 'style':
btn1 = gr.Radio(
choices=["Image", "Nothing"],
label=f"Input type for {cond_name}",
interactive=True,
value="Nothing",
)
else:
btn1 = gr.Radio(
choices=["Image", cond_name, "Nothing"],
label=f"Input type for {cond_name}",
interactive=True,
value="Nothing",
)
im1 = gr.Image(source='upload', label="Image", interactive=True, visible=False, type="numpy")
im2 = gr.Image(source='upload', label=cond_name, interactive=True, visible=False, type="numpy")
cond_weight = gr.Slider(
label="Condition weight", minimum=0, maximum=5, step=0.05, value=1, interactive=True)
fn = partial(change_visible, im1, im2)
btn1.change(fn=fn, inputs=[btn1], outputs=[im1, im2], queue=False)
btns.append(btn1)
ims1.append(im1)
ims2.append(im2)
cond_weights.append(cond_weight)
with gr.Column():
prompt = gr.Textbox(label="Prompt")
neg_prompt = gr.Textbox(label="Negative Prompt", value=DEFAULT_NEGATIVE_PROMPT)
scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", value=7.5, minimum=1, maximum=20, step=0.1)
n_samples = gr.Slider(label="Num samples", value=1, minimum=1, maximum=1, step=1)
seed = gr.Slider(label="Seed", value=42, minimum=0, maximum=10000, step=1)
steps = gr.Slider(label="Steps", value=50, minimum=10, maximum=100, step=1)
resize_short_edge = gr.Slider(label="Image resolution", value=512, minimum=320, maximum=1024, step=1)
cond_tau = gr.Slider(
label="timestamp parameter that determines until which step the adapter is applied",
value=1.0,
minimum=0.1,
maximum=1.0,
step=0.05)
with gr.Row():
submit = gr.Button("Generate")
output = gr.Gallery().style(grid=2, height='auto')
cond = gr.Gallery().style(grid=2, height='auto')
inps = list(chain(btns, ims1, ims2, cond_weights))
inps.extend([prompt, neg_prompt, scale, n_samples, seed, steps, resize_short_edge, cond_tau])
submit.click(fn=run, inputs=inps, outputs=[output, cond])
# demo.launch()
demo.queue().launch(debug=True, server_name='0.0.0.0')
|