CoAdapter / ldm /data /utils.py
MC-E
first push
c05d22e
# -*- coding: utf-8 -*-
import cv2
import numpy as np
from torchvision.transforms import transforms
from torchvision.transforms.functional import to_tensor
from transformers import CLIPProcessor
from basicsr.utils import img2tensor
class AddCannyFreezeThreshold(object):
def __init__(self, low_threshold=100, high_threshold=200):
self.low_threshold = low_threshold
self.high_threshold = high_threshold
def __call__(self, sample):
# sample['jpg'] is PIL image
x = sample['jpg']
img = cv2.cvtColor(np.array(x), cv2.COLOR_RGB2BGR)
canny = cv2.Canny(img, self.low_threshold, self.high_threshold)[..., None]
sample['canny'] = img2tensor(canny, bgr2rgb=True, float32=True) / 255.
sample['jpg'] = to_tensor(x)
return sample
class AddCannyRandomThreshold(object):
def __init__(self, low_threshold=100, high_threshold=200, shift_range=50):
self.low_threshold = low_threshold
self.high_threshold = high_threshold
self.threshold_prng = np.random.RandomState()
self.shift_range = shift_range
def __call__(self, sample):
# sample['jpg'] is PIL image
x = sample['jpg']
img = cv2.cvtColor(np.array(x), cv2.COLOR_RGB2BGR)
low_threshold = self.low_threshold + self.threshold_prng.randint(-self.shift_range, self.shift_range)
high_threshold = self.high_threshold + self.threshold_prng.randint(-self.shift_range, self.shift_range)
canny = cv2.Canny(img, low_threshold, high_threshold)[..., None]
sample['canny'] = img2tensor(canny, bgr2rgb=True, float32=True) / 255.
sample['jpg'] = to_tensor(x)
return sample
class AddStyle(object):
def __init__(self, version):
self.processor = CLIPProcessor.from_pretrained(version)
self.pil_to_tensor = transforms.ToTensor()
def __call__(self, sample):
# sample['jpg'] is PIL image
x = sample['jpg']
style = self.processor(images=x, return_tensors="pt")['pixel_values'][0]
sample['style'] = style
sample['jpg'] = to_tensor(x)
return sample