Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
import cv2 | |
import numpy as np | |
from torchvision.transforms import transforms | |
from torchvision.transforms.functional import to_tensor | |
from transformers import CLIPProcessor | |
from basicsr.utils import img2tensor | |
class AddCannyFreezeThreshold(object): | |
def __init__(self, low_threshold=100, high_threshold=200): | |
self.low_threshold = low_threshold | |
self.high_threshold = high_threshold | |
def __call__(self, sample): | |
# sample['jpg'] is PIL image | |
x = sample['jpg'] | |
img = cv2.cvtColor(np.array(x), cv2.COLOR_RGB2BGR) | |
canny = cv2.Canny(img, self.low_threshold, self.high_threshold)[..., None] | |
sample['canny'] = img2tensor(canny, bgr2rgb=True, float32=True) / 255. | |
sample['jpg'] = to_tensor(x) | |
return sample | |
class AddCannyRandomThreshold(object): | |
def __init__(self, low_threshold=100, high_threshold=200, shift_range=50): | |
self.low_threshold = low_threshold | |
self.high_threshold = high_threshold | |
self.threshold_prng = np.random.RandomState() | |
self.shift_range = shift_range | |
def __call__(self, sample): | |
# sample['jpg'] is PIL image | |
x = sample['jpg'] | |
img = cv2.cvtColor(np.array(x), cv2.COLOR_RGB2BGR) | |
low_threshold = self.low_threshold + self.threshold_prng.randint(-self.shift_range, self.shift_range) | |
high_threshold = self.high_threshold + self.threshold_prng.randint(-self.shift_range, self.shift_range) | |
canny = cv2.Canny(img, low_threshold, high_threshold)[..., None] | |
sample['canny'] = img2tensor(canny, bgr2rgb=True, float32=True) / 255. | |
sample['jpg'] = to_tensor(x) | |
return sample | |
class AddStyle(object): | |
def __init__(self, version): | |
self.processor = CLIPProcessor.from_pretrained(version) | |
self.pil_to_tensor = transforms.ToTensor() | |
def __call__(self, sample): | |
# sample['jpg'] is PIL image | |
x = sample['jpg'] | |
style = self.processor(images=x, return_tensors="pt")['pixel_values'][0] | |
sample['style'] = style | |
sample['jpg'] = to_tensor(x) | |
return sample | |