Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
from transformers import CLIPVisionModel | |
from ldm.models.diffusion.ddpm import LatentDiffusion, disabled_train | |
from ldm.util import instantiate_from_config | |
class T2IAdapterStyleV3(LatentDiffusion): | |
def __init__(self, adapter_config, extra_cond_key, noise_schedule, *args, **kwargs): | |
super(T2IAdapterStyleV3, self).__init__(*args, **kwargs) | |
self.adapter = instantiate_from_config(adapter_config) | |
self.extra_cond_key = extra_cond_key | |
self.noise_schedule = noise_schedule | |
self.clip_vision_model = CLIPVisionModel.from_pretrained( | |
'openai/clip-vit-large-patch14' | |
) | |
self.clip_vision_model = self.clip_vision_model.eval() | |
self.clip_vision_model.train = disabled_train | |
for param in self.clip_vision_model.parameters(): | |
param.requires_grad = False | |
def shared_step(self, batch, **kwargs): | |
for k in self.ucg_training: | |
if k == self.extra_cond_key: | |
continue | |
p = self.ucg_training[k] | |
for i in range(len(batch[k])): | |
if self.ucg_prng.choice(2, p=[1 - p, p]): | |
if isinstance(batch[k], list): | |
batch[k][i] = "" | |
batch['jpg'] = batch['jpg'] * 2 - 1 | |
x, c = self.get_input(batch, self.first_stage_key) | |
extra_cond = super(LatentDiffusion, self).get_input(batch, self.extra_cond_key).to(self.device) | |
extra_cond = self.clip_vision_model(extra_cond)['last_hidden_state'] | |
features_adapter = self.adapter(extra_cond) | |
if self.extra_cond_key in self.ucg_training: | |
idx = np.random.choice(self.adapter.num_token, np.random.randint(1, self.adapter.num_token+1), replace=False) | |
idx_tensor = torch.from_numpy(idx).to(features_adapter.device) | |
features_adapter = torch.index_select(features_adapter, 1, idx_tensor) | |
t = self.get_time_with_schedule(self.noise_schedule, x.size(0)) | |
loss, loss_dict = self(x, c, t=t, append_to_context=features_adapter) | |
return loss, loss_dict | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.adapter.parameters()) | |
opt = torch.optim.AdamW(params, lr=lr) | |
return opt | |
def on_save_checkpoint(self, checkpoint): | |
keys = list(checkpoint['state_dict'].keys()) | |
for key in keys: | |
if 'adapter' not in key: | |
del checkpoint['state_dict'][key] | |
def on_load_checkpoint(self, checkpoint): | |
for name in self.state_dict(): | |
if 'adapter' not in name: | |
checkpoint['state_dict'][name] = self.state_dict()[name] | |