T2I-Adapter / train_sketch.py
Adapter's picture
first upload
fb6c2da
raw
history blame
14.4 kB
import argparse
import logging
import os
import os.path as osp
import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from basicsr.utils import (get_env_info, get_root_logger, get_time_str,
img2tensor, scandir, tensor2img)
from basicsr.utils.options import copy_opt_file, dict2str
from omegaconf import OmegaConf
from PIL import Image
from dataset_coco import dataset_coco_mask_color
from dist_util import get_bare_model, get_dist_info, init_dist, master_only
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.adapter import Adapter
from ldm.util import instantiate_from_config
from load_json import load_json
from model_edge import pidinet
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
@master_only
def mkdir_and_rename(path):
"""mkdirs. If path exists, rename it with timestamp and create a new one.
Args:
path (str): Folder path.
"""
if osp.exists(path):
new_name = path + '_archived_' + get_time_str()
print(f'Path already exists. Rename it to {new_name}', flush=True)
os.rename(path, new_name)
os.makedirs(path, exist_ok=True)
os.makedirs(osp.join(experiments_root, 'models'))
os.makedirs(osp.join(experiments_root, 'training_states'))
os.makedirs(osp.join(experiments_root, 'visualization'))
def load_resume_state(opt):
resume_state_path = None
if opt.auto_resume:
state_path = osp.join('experiments', opt.name, 'training_states')
if osp.isdir(state_path):
states = list(scandir(state_path, suffix='state', recursive=False, full_path=False))
if len(states) != 0:
states = [float(v.split('.state')[0]) for v in states]
resume_state_path = osp.join(state_path, f'{max(states):.0f}.state')
opt.resume_state_path = resume_state_path
# else:
# if opt['path'].get('resume_state'):
# resume_state_path = opt['path']['resume_state']
if resume_state_path is None:
resume_state = None
else:
device_id = torch.cuda.current_device()
resume_state = torch.load(resume_state_path, map_location=lambda storage, loc: storage.cuda(device_id))
# check_resume(opt, resume_state['iter'])
return resume_state
parser = argparse.ArgumentParser()
parser.add_argument(
"--bsize",
type=int,
default=8,
help="the prompt to render"
)
parser.add_argument(
"--epochs",
type=int,
default=10000,
help="the prompt to render"
)
parser.add_argument(
"--num_workers",
type=int,
default=8,
help="the prompt to render"
)
parser.add_argument(
"--use_shuffle",
type=bool,
default=True,
help="the prompt to render"
)
parser.add_argument(
"--dpm_solver",
action='store_true',
help="use dpm_solver sampling",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--auto_resume",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/sd-v1-4.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/train_sketch.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--print_fq",
type=int,
default=100,
help="path to config which constructs model",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--gpus",
default=[0,1,2,3],
help="gpu idx",
)
parser.add_argument(
'--local_rank',
default=0,
type=int,
help='node rank for distributed training'
)
parser.add_argument(
'--launcher',
default='pytorch',
type=str,
help='node rank for distributed training'
)
parser.add_argument(
'--l_cond',
default=4,
type=int,
help='number of scales'
)
opt = parser.parse_args()
if __name__ == '__main__':
config = OmegaConf.load(f"{opt.config}")
opt.name = config['name']
# distributed setting
init_dist(opt.launcher)
torch.backends.cudnn.benchmark = True
device='cuda'
torch.cuda.set_device(opt.local_rank)
# dataset
path_json_train = 'coco_stuff/mask/annotations/captions_train2017.json'
path_json_val = 'coco_stuff/mask/annotations/captions_val2017.json'
train_dataset = dataset_coco_mask_color(path_json_train,
root_path_im='coco/train2017',
root_path_mask='coco_stuff/mask/train2017_color',
image_size=512
)
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
val_dataset = dataset_coco_mask_color(path_json_val,
root_path_im='coco/val2017',
root_path_mask='coco_stuff/mask/val2017_color',
image_size=512
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=opt.bsize,
shuffle=(train_sampler is None),
num_workers=opt.num_workers,
pin_memory=True,
sampler=train_sampler)
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1,
shuffle=False,
num_workers=1,
pin_memory=False)
# edge_generator
net_G = pidinet()
ckp = torch.load('models/table5_pidinet.pth', map_location='cpu')['state_dict']
net_G.load_state_dict({k.replace('module.',''):v for k, v in ckp.items()})
net_G.cuda()
# stable diffusion
model = load_model_from_config(config, f"{opt.ckpt}").to(device)
# sketch encoder
model_ad = Adapter(channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
# to gpus
model_ad = torch.nn.parallel.DistributedDataParallel(
model_ad,
device_ids=[opt.local_rank],
output_device=opt.local_rank)
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[opt.local_rank],
output_device=opt.local_rank)
# device_ids=[torch.cuda.current_device()])
net_G = torch.nn.parallel.DistributedDataParallel(
net_G,
device_ids=[opt.local_rank],
output_device=opt.local_rank)
# device_ids=[torch.cuda.current_device()])
# optimizer
params = list(model_ad.parameters())
optimizer = torch.optim.AdamW(params, lr=config['training']['lr'])
experiments_root = osp.join('experiments', opt.name)
# resume state
resume_state = load_resume_state(opt)
if resume_state is None:
mkdir_and_rename(experiments_root)
start_epoch = 0
current_iter = 0
# WARNING: should not use get_root_logger in the above codes, including the called functions
# Otherwise the logger will not be properly initialized
log_file = osp.join(experiments_root, f"train_{opt.name}_{get_time_str()}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(config))
else:
# WARNING: should not use get_root_logger in the above codes, including the called functions
# Otherwise the logger will not be properly initialized
log_file = osp.join(experiments_root, f"train_{opt.name}_{get_time_str()}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(config))
resume_optimizers = resume_state['optimizers']
optimizer.load_state_dict(resume_optimizers)
logger.info(f"Resuming training from epoch: {resume_state['epoch']}, " f"iter: {resume_state['iter']}.")
start_epoch = resume_state['epoch']
current_iter = resume_state['iter']
# copy the yml file to the experiment root
copy_opt_file(opt.config, experiments_root)
# training
logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter}')
for epoch in range(start_epoch, opt.epochs):
train_dataloader.sampler.set_epoch(epoch)
# train
for _, data in enumerate(train_dataloader):
current_iter += 1
with torch.no_grad():
edge = net_G(data['im'].cuda(non_blocking=True))[-1]
edge = edge>0.5
edge = edge.float()
c = model.module.get_learned_conditioning(data['sentence'])
z = model.module.encode_first_stage((data['im']*2-1.).cuda(non_blocking=True))
z = model.module.get_first_stage_encoding(z)
optimizer.zero_grad()
model.zero_grad()
features_adapter = model_ad(edge)
l_pixel, loss_dict = model(z, c=c, features_adapter = features_adapter)
l_pixel.backward()
optimizer.step()
if (current_iter+1)%opt.print_fq == 0:
logger.info(loss_dict)
# save checkpoint
rank, _ = get_dist_info()
if (rank==0) and ((current_iter+1)%config['training']['save_freq'] == 0):
save_filename = f'model_ad_{current_iter+1}.pth'
save_path = os.path.join(experiments_root, 'models', save_filename)
save_dict = {}
model_ad_bare = get_bare_model(model_ad)
state_dict = model_ad_bare.state_dict()
for key, param in state_dict.items():
if key.startswith('module.'): # remove unnecessary 'module.'
key = key[7:]
save_dict[key] = param.cpu()
torch.save(save_dict, save_path)
# save state
state = {'epoch': epoch, 'iter': current_iter+1, 'optimizers': optimizer.state_dict()}
save_filename = f'{current_iter+1}.state'
save_path = os.path.join(experiments_root, 'training_states', save_filename)
torch.save(state, save_path)
# val
rank, _ = get_dist_info()
if rank==0:
for data in val_dataloader:
with torch.no_grad():
if opt.dpm_solver:
sampler = DPMSolverSampler(model.module)
elif opt.plms:
sampler = PLMSSampler(model.module)
else:
sampler = DDIMSampler(model.module)
print(data['im'].shape)
c = model.module.get_learned_conditioning(data['sentence'])
edge = net_G(data['im'].cuda(non_blocking=True))[-1]
edge = edge>0.5
edge = edge.float()
im_edge = tensor2img(edge)
cv2.imwrite(os.path.join(experiments_root, 'visualization', 'edge_%04d.png'%epoch), im_edge)
features_adapter = model_ad(edge)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=model.module.get_learned_conditioning(opt.n_samples * [""]),
eta=opt.ddim_eta,
x_T=None,
features_adapter1=features_adapter)
x_samples_ddim = model.module.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
for id_sample, x_sample in enumerate(x_samples_ddim):
x_sample = 255.*x_sample
img = x_sample.astype(np.uint8)
img = cv2.putText(img.copy(), data['sentence'][0], (10,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
cv2.imwrite(os.path.join(experiments_root, 'visualization', 'sample_e%04d_s%04d.png'%(epoch, id_sample)), img[:,:,::-1])
break