Spaces:
Running
on
Zero
Running
on
Zero
fixed app.py
Browse files- app.py +25 -15
- config.json +0 -9
app.py
CHANGED
@@ -5,7 +5,9 @@ import gc
|
|
5 |
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
|
|
8 |
|
|
|
9 |
warnings.filterwarnings('ignore')
|
10 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
11 |
|
@@ -13,22 +15,30 @@ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
|
13 |
model = None
|
14 |
processor = None
|
15 |
|
|
|
16 |
if torch.cuda.is_available():
|
17 |
torch.cuda.empty_cache()
|
18 |
gc.collect()
|
19 |
print("เคลียร์ CUDA cache เรียบร้อยแล้ว")
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def load_model_and_processor():
|
22 |
"""โหลดโมเดลและ processor"""
|
23 |
global model, processor
|
24 |
print("กำลังโหลดโมเดลและ processor...")
|
25 |
|
26 |
try:
|
27 |
-
#
|
28 |
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
29 |
hub_model_path = "Aekanun/thai-handwriting-llm"
|
30 |
|
31 |
-
#
|
32 |
bnb_config = BitsAndBytesConfig(
|
33 |
load_in_4bit=True,
|
34 |
bnb_4bit_use_double_quant=True,
|
@@ -36,21 +46,19 @@ def load_model_and_processor():
|
|
36 |
bnb_4bit_compute_dtype=torch.bfloat16
|
37 |
)
|
38 |
|
39 |
-
#
|
40 |
-
print("Loading processor...")
|
41 |
processor = AutoProcessor.from_pretrained(base_model_path)
|
42 |
|
43 |
-
#
|
44 |
-
print("
|
45 |
model = AutoModelForVision2Seq.from_pretrained(
|
46 |
hub_model_path,
|
47 |
device_map="auto",
|
48 |
torch_dtype=torch.bfloat16,
|
49 |
quantization_config=bnb_config,
|
50 |
-
trust_remote_code=True
|
51 |
-
force_download=True # เพิ่มมาเพื่อให้โหลดใหม่
|
52 |
)
|
53 |
-
print("
|
54 |
|
55 |
return True
|
56 |
except Exception as e:
|
@@ -68,14 +76,12 @@ def process_handwriting(image):
|
|
68 |
# Ensure image is in PIL format
|
69 |
if not isinstance(image, Image.Image):
|
70 |
image = Image.fromarray(image)
|
71 |
-
|
72 |
-
#
|
73 |
-
if image.mode != "RGB":
|
74 |
-
image = image.convert("RGB")
|
75 |
-
|
76 |
prompt = """Transcribe the Thai handwritten text from the provided image.
|
77 |
Only return the transcription in Thai language."""
|
78 |
|
|
|
79 |
messages = [
|
80 |
{
|
81 |
"role": "user",
|
@@ -86,10 +92,12 @@ Only return the transcription in Thai language."""
|
|
86 |
}
|
87 |
]
|
88 |
|
|
|
89 |
text = processor.apply_chat_template(messages, tokenize=False)
|
90 |
inputs = processor(text=text, images=image, return_tensors="pt")
|
91 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
92 |
|
|
|
93 |
with torch.no_grad():
|
94 |
outputs = model.generate(
|
95 |
**inputs,
|
@@ -98,6 +106,7 @@ Only return the transcription in Thai language."""
|
|
98 |
pad_token_id=processor.tokenizer.pad_token_id
|
99 |
)
|
100 |
|
|
|
101 |
transcription = processor.decode(outputs[0], skip_special_tokens=True)
|
102 |
return transcription.strip()
|
103 |
|
@@ -113,7 +122,8 @@ if load_model_and_processor():
|
|
113 |
inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
|
114 |
outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
|
115 |
title="Thai Handwriting Recognition",
|
116 |
-
description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ"
|
|
|
117 |
)
|
118 |
|
119 |
if __name__ == "__main__":
|
|
|
5 |
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
+
from huggingface_hub import login
|
9 |
|
10 |
+
# Basic settings
|
11 |
warnings.filterwarnings('ignore')
|
12 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
13 |
|
|
|
15 |
model = None
|
16 |
processor = None
|
17 |
|
18 |
+
# Clear CUDA cache
|
19 |
if torch.cuda.is_available():
|
20 |
torch.cuda.empty_cache()
|
21 |
gc.collect()
|
22 |
print("เคลียร์ CUDA cache เรียบร้อยแล้ว")
|
23 |
|
24 |
+
# Login to Hugging Face Hub
|
25 |
+
if 'HUGGING_FACE_HUB_TOKEN' in os.environ:
|
26 |
+
print("กำลังเข้าสู่ระบบ Hugging Face Hub...")
|
27 |
+
login(token=os.environ['HUGGING_FACE_HUB_TOKEN'])
|
28 |
+
else:
|
29 |
+
print("คำเตือน: ไม่พบ HUGGING_FACE_HUB_TOKEN")
|
30 |
+
|
31 |
def load_model_and_processor():
|
32 |
"""โหลดโมเดลและ processor"""
|
33 |
global model, processor
|
34 |
print("กำลังโหลดโมเดลและ processor...")
|
35 |
|
36 |
try:
|
37 |
+
# Model paths
|
38 |
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
39 |
hub_model_path = "Aekanun/thai-handwriting-llm"
|
40 |
|
41 |
+
# BitsAndBytes config
|
42 |
bnb_config = BitsAndBytesConfig(
|
43 |
load_in_4bit=True,
|
44 |
bnb_4bit_use_double_quant=True,
|
|
|
46 |
bnb_4bit_compute_dtype=torch.bfloat16
|
47 |
)
|
48 |
|
49 |
+
# Load processor from base model
|
|
|
50 |
processor = AutoProcessor.from_pretrained(base_model_path)
|
51 |
|
52 |
+
# Load model from Hub
|
53 |
+
print("กำลังโหลดโมเดลจาก Hub...")
|
54 |
model = AutoModelForVision2Seq.from_pretrained(
|
55 |
hub_model_path,
|
56 |
device_map="auto",
|
57 |
torch_dtype=torch.bfloat16,
|
58 |
quantization_config=bnb_config,
|
59 |
+
trust_remote_code=True
|
|
|
60 |
)
|
61 |
+
print("โหลดโมเดลสำเร็จ!")
|
62 |
|
63 |
return True
|
64 |
except Exception as e:
|
|
|
76 |
# Ensure image is in PIL format
|
77 |
if not isinstance(image, Image.Image):
|
78 |
image = Image.fromarray(image)
|
79 |
+
|
80 |
+
# Create prompt
|
|
|
|
|
|
|
81 |
prompt = """Transcribe the Thai handwritten text from the provided image.
|
82 |
Only return the transcription in Thai language."""
|
83 |
|
84 |
+
# Create model inputs
|
85 |
messages = [
|
86 |
{
|
87 |
"role": "user",
|
|
|
92 |
}
|
93 |
]
|
94 |
|
95 |
+
# Process with model
|
96 |
text = processor.apply_chat_template(messages, tokenize=False)
|
97 |
inputs = processor(text=text, images=image, return_tensors="pt")
|
98 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
99 |
|
100 |
+
# Generate
|
101 |
with torch.no_grad():
|
102 |
outputs = model.generate(
|
103 |
**inputs,
|
|
|
106 |
pad_token_id=processor.tokenizer.pad_token_id
|
107 |
)
|
108 |
|
109 |
+
# Decode output
|
110 |
transcription = processor.decode(outputs[0], skip_special_tokens=True)
|
111 |
return transcription.strip()
|
112 |
|
|
|
122 |
inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
|
123 |
outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
|
124 |
title="Thai Handwriting Recognition",
|
125 |
+
description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ",
|
126 |
+
examples=[["example1.jpg"], ["example2.jpg"]]
|
127 |
)
|
128 |
|
129 |
if __name__ == "__main__":
|
config.json
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": ["LlamaForCausalLM"],
|
3 |
-
"model_type": "llama",
|
4 |
-
"tokenizer_class": "PreTrainedTokenizerFast",
|
5 |
-
"model_max_length": 131072,
|
6 |
-
"megatron_core": "megatron.core",
|
7 |
-
"task_type": "CAUSAL_LM",
|
8 |
-
"target_modules": ["q_proj", "v_proj"]
|
9 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|