import os import warnings import torch import gc from transformers import AutoModelForVision2Seq, AutoProcessor from peft import PeftModel from PIL import Image import gradio as gr from huggingface_hub import login import spaces # เพิ่ม import spaces # Basic settings warnings.filterwarnings('ignore') # Global variables model = None processor = None # Login to Hugging Face Hub if 'HUGGING_FACE_HUB_TOKEN' in os.environ: print("กำลังเข้าสู่ระบบ Hugging Face Hub...") login(token=os.environ['HUGGING_FACE_HUB_TOKEN']) else: print("คำเตือน: ไม่พบ HUGGING_FACE_HUB_TOKEN") def load_model_and_processor(): """โหลดโมเดลและ processor""" global model, processor print("กำลังโหลดโมเดลและ processor...") try: # Model paths base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct" adapter_path = "Aekanun/thai-handwriting-llm" # Load processor from base model print("กำลังโหลด processor...") processor = AutoProcessor.from_pretrained( base_model_path, use_auth_token=True ) # Load base model print("กำลังโหลด base model...") base_model = AutoModelForVision2Seq.from_pretrained( base_model_path, device_map="auto", torch_dtype=torch.float16, # เปลี่ยนกลับเป็น float16 trust_remote_code=True, use_auth_token=True ) # Load adapter print("กำลังโหลด adapter...") model = PeftModel.from_pretrained( base_model, adapter_path, device_map="auto", # ให้จัดการ device map อัตโนมัติ torch_dtype=torch.float16, use_auth_token=True ) print("โหลดโมเดลสำเร็จ!") return True except Exception as e: print(f"เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}") return False @spaces.GPU(duration=30) # ใช้ GPU decorator กำหนดเวลาสูงสุด 30 วินาที def process_handwriting(image): """ฟังก์ชันสำหรับ Gradio interface""" global model, processor if image is None: return "กรุณาอัพโหลดรูปภาพ" try: # Ensure image is in PIL format if not isinstance(image, Image.Image): image = Image.fromarray(image) # Create prompt prompt = """Transcribe the Thai handwritten text from the provided image. Only return the transcription in Thai language.""" # Create model inputs messages = [ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image", "image": image} ], } ] # Process with model text = processor.apply_chat_template(messages, tokenize=False) inputs = processor(text=text, images=image, return_tensors="pt") inputs = {k: v.to(model.device) for k, v in inputs.items()} # Generate with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=512, ##256 do_sample=False, pad_token_id=processor.tokenizer.pad_token_id ) # Decode output transcription = processor.decode(outputs[0], skip_special_tokens=True) return transcription.strip() except Exception as e: return f"เกิดข้อผิดพลาด: {str(e)}" # Initialize application print("กำลังเริ่มต้นแอปพลิเคชัน...") if load_model_and_processor(): # Create Gradio interface demo = gr.Interface( fn=process_handwriting, inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"), outputs=gr.Textbox(label="ข้อความที่แปลงได้"), title="Thai Handwriting Recognition and Vision-Language", description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ", examples=[["example1.jpg"], ["example2.jpg"]] ) if __name__ == "__main__": demo.launch(show_error=True) else: print("ไม่สามารถเริ่มต้นแอปพลิเคชันได้")