Spaces:
Sleeping
Sleeping
Afrinetwork7
commited on
Commit
•
09ab406
1
Parent(s):
384d281
Update app.py
Browse files
app.py
CHANGED
@@ -1,95 +1,57 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
)
|
26 |
-
|
27 |
-
|
28 |
-
)
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
outputs=[
|
42 |
-
gr.Audio(label="Generated Audio", type="numpy"),
|
43 |
-
gr.Text(label="Filtered text after removing OOVs"),
|
44 |
-
],
|
45 |
-
examples=TTS_EXAMPLES,
|
46 |
-
title="Text-to-speech",
|
47 |
-
description=("Generate audio in your desired language from input text."),
|
48 |
-
allow_flagging="never",
|
49 |
-
)
|
50 |
-
|
51 |
-
mms_identify = gr.Interface(
|
52 |
-
fn=identify,
|
53 |
-
inputs=[
|
54 |
-
gr.Audio(),
|
55 |
-
],
|
56 |
-
outputs=gr.Label(num_top_classes=10),
|
57 |
-
examples=LID_EXAMPLES,
|
58 |
-
title="Language Identification",
|
59 |
-
description=("Identity the language of input audio."),
|
60 |
-
allow_flagging="never",
|
61 |
-
)
|
62 |
-
|
63 |
-
tabbed_interface = gr.TabbedInterface(
|
64 |
-
[mms_transcribe, mms_synthesize, mms_identify],
|
65 |
-
["Speech-to-text", "Text-to-speech", "Language Identification"],
|
66 |
-
)
|
67 |
-
|
68 |
-
with gr.Blocks() as demo:
|
69 |
-
gr.Markdown(
|
70 |
-
"<p align='center' style='font-size: 20px;'>MMS: Scaling Speech Technology to 1000+ languages demo. See our <a href='https://ai.facebook.com/blog/multilingual-model-speech-recognition/'>blog post</a> and <a href='https://arxiv.org/abs/2305.13516'>paper</a>.</p>"
|
71 |
-
)
|
72 |
-
gr.HTML(
|
73 |
-
"""<center>Click on the appropriate tab to explore Speech-to-text (ASR), Text-to-speech (TTS) and Language identification (LID) demos. </center>"""
|
74 |
-
)
|
75 |
-
gr.HTML(
|
76 |
-
"""<center>You can also finetune MMS models on your data using the recipes provides here - <a href='https://huggingface.co/blog/mms_adapters'>ASR</a> <a href='https://github.com/ylacombe/finetune-hf-vits'>TTS</a> </center>"""
|
77 |
-
)
|
78 |
-
gr.HTML(
|
79 |
-
"""<center><a href="https://huggingface.co/spaces/facebook/MMS?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"><img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for more control and no queue.</center>"""
|
80 |
-
)
|
81 |
-
|
82 |
-
tabbed_interface.render()
|
83 |
-
gr.HTML(
|
84 |
-
"""
|
85 |
-
<div class="footer" style="text-align:center">
|
86 |
-
<p>
|
87 |
-
Model by <a href="https://ai.facebook.com" style="text-decoration: underline;" target="_blank">Meta AI</a> - Gradio Demo by 🤗 Hugging Face
|
88 |
-
</p>
|
89 |
-
</div>
|
90 |
-
"""
|
91 |
)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Form
|
2 |
+
from fastapi.responses import JSONResponse, FileResponse
|
3 |
+
import uvicorn
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import numpy as np
|
6 |
+
import io
|
7 |
+
import soundfile as sf
|
8 |
+
|
9 |
+
from asr import transcribe, ASR_LANGUAGES
|
10 |
+
from tts import synthesize, TTS_LANGUAGES
|
11 |
+
from lid import identify
|
12 |
+
|
13 |
+
app = FastAPI(title="MMS: Scaling Speech Technology to 1000+ languages")
|
14 |
+
|
15 |
+
class TTSRequest(BaseModel):
|
16 |
+
text: str
|
17 |
+
language: str
|
18 |
+
speed: float
|
19 |
+
|
20 |
+
@app.post("/transcribe")
|
21 |
+
async def transcribe_audio(audio: UploadFile = File(...), language: str = Form(...)):
|
22 |
+
contents = await audio.read()
|
23 |
+
audio_array, sample_rate = sf.read(io.BytesIO(contents))
|
24 |
+
|
25 |
+
result = transcribe(audio_array, language)
|
26 |
+
return JSONResponse(content={"transcription": result})
|
27 |
+
|
28 |
+
@app.post("/synthesize")
|
29 |
+
async def synthesize_speech(request: TTSRequest):
|
30 |
+
audio, filtered_text = synthesize(request.text, request.language, request.speed)
|
31 |
+
|
32 |
+
# Convert numpy array to bytes
|
33 |
+
buffer = io.BytesIO()
|
34 |
+
sf.write(buffer, audio, 22050, format='wav')
|
35 |
+
buffer.seek(0)
|
36 |
+
|
37 |
+
return FileResponse(
|
38 |
+
buffer,
|
39 |
+
media_type="audio/wav",
|
40 |
+
headers={"Content-Disposition": "attachment; filename=synthesized_audio.wav"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
42 |
|
43 |
+
@app.post("/identify")
|
44 |
+
async def identify_language(audio: UploadFile = File(...)):
|
45 |
+
contents = await audio.read()
|
46 |
+
audio_array, sample_rate = sf.read(io.BytesIO(contents))
|
47 |
+
|
48 |
+
result = identify(audio_array)
|
49 |
+
return JSONResponse(content={"language_identification": result})
|
50 |
+
|
51 |
+
@app.get("/asr_languages")
|
52 |
+
async def get_asr_languages():
|
53 |
+
return JSONResponse(content=ASR_LANGUAGES)
|
54 |
+
|
55 |
+
@app.get("/tts_languages")
|
56 |
+
async def get_tts_languages():
|
57 |
+
return JSONResponse(content=TTS_LANGUAGES)
|