import gradio as gr
import edge_tts
import tempfile
import numpy as np
import soxr
from pydub import AudioSegment
import torch
import sentencepiece as spm
import onnxruntime as ort
from huggingface_hub import hf_hub_download, InferenceClient
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="orange")
# Speech Recognition Model Configuration
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
sample_rate = 16000
# Download preprocessor, encoder and tokenizer
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
# Mistral Model Configuration
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "[SYSTEM] Answer as OpenGPT 4o, Made by 'Mazen', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide Funny responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
def resample(audio_fp32, sr):
return soxr.resample(audio_fp32, sr, sample_rate)
def to_float32(audio_buffer):
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
async def transcribe(audio_path):
audio_file = AudioSegment.from_file(audio_path)
sr = audio_file.frame_rate
audio_buffer = np.array(audio_file.get_array_of_samples())
audio_fp32 = to_float32(audio_buffer)
audio_16k = resample(audio_fp32, sr)
input_signal = torch.tensor(audio_16k).unsqueeze(0)
length = torch.tensor(len(audio_16k)).unsqueeze(0)
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
blank_id = tokenizer.vocab_size()
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
text = tokenizer.decode_ids(decoded_prediction)
return text
async def model(text):
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
return "".join([response.token.text for response in stream if response.token.text != ""])
async def respond(audio):
user = await transcribe(audio)
reply = await model(user)
communicate = edge_tts.Communicate(reply, voice="en-US-JennyNeural") # Example voice
##communicate = edge_tts.Communicate(reply)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
with gr.Blocks(theme=theme) as demo:
input = gr.Audio(label="User Input", sources="microphone", type="filepath")
output = gr.Audio(label="AI", autoplay=True)
gr.Interface(fn=respond, inputs=[input], outputs=[output], live=True)
if __name__ == "__main__":
demo.queue(max_size=200).launch()
# import gradio as gr
# import edge_tts
# import asyncio
# import tempfile
# import numpy as np
# import soxr
# from pydub import AudioSegment
# import torch
# import sentencepiece as spm
# import onnxruntime as ort
# from huggingface_hub import hf_hub_download, InferenceClient
# import requests
# from bs4 import BeautifulSoup
# import urllib
# import random
# theme = gr.themes.Soft(
# primary_hue="blue",
# secondary_hue="orange")
# # List of user agents to choose from for requests
# _useragent_list = [
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
# 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
# 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
# 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
# ]
# def get_useragent():
# """Returns a random user agent from the list."""
# return random.choice(_useragent_list)
# def extract_text_from_webpage(html_content):
# """Extracts visible text from HTML content using BeautifulSoup."""
# soup = BeautifulSoup(html_content, "html.parser")
# # Remove unwanted tags
# for tag in soup(["script", "style", "header", "footer", "nav"]):
# tag.extract()
# # Get the remaining visible text
# visible_text = soup.get_text(strip=True)
# return visible_text
# def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
# """Performs a Google search and returns the results."""
# escaped_term = urllib.parse.quote_plus(term)
# start = 0
# all_results = []
# # Fetch results in batches
# while start < num_results:
# resp = requests.get(
# url="https://www.google.com/search",
# headers={"User-Agent": get_useragent()}, # Set random user agent
# params={
# "q": term,
# "num": num_results - start, # Number of results to fetch in this batch
# "hl": lang,
# "start": start,
# "safe": safe,
# },
# timeout=timeout,
# verify=ssl_verify,
# )
# resp.raise_for_status() # Raise an exception if request fails
# soup = BeautifulSoup(resp.text, "html.parser")
# result_block = soup.find_all("div", attrs={"class": "g"})
# # If no results, continue to the next batch
# if not result_block:
# start += 1
# continue
# # Extract link and text from each result
# for result in result_block:
# link = result.find("a", href=True)
# if link:
# link = link["href"]
# try:
# # Fetch webpage content
# webpage = requests.get(link, headers={"User-Agent": get_useragent()})
# webpage.raise_for_status()
# # Extract visible text from webpage
# visible_text = extract_text_from_webpage(webpage.text)
# all_results.append({"link": link, "text": visible_text})
# except requests.exceptions.RequestException as e:
# # Handle errors fetching or processing webpage
# print(f"Error fetching or processing {link}: {e}")
# all_results.append({"link": link, "text": None})
# else:
# all_results.append({"link": None, "text": None})
# start += len(result_block) # Update starting index for next batch
# return all_results
# # Speech Recognition Model Configuration
# model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25"
# sample_rate = 16000
# # Download preprocessor, encoder and tokenizer
# preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx"))
# encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx"))
# tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx"))
# # Mistral Model Configuration
# client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# system_instructions1 = "[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
# def resample(audio_fp32, sr):
# return soxr.resample(audio_fp32, sr, sample_rate)
# def to_float32(audio_buffer):
# return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32)
# def transcribe(audio_path):
# audio_file = AudioSegment.from_file(audio_path)
# sr = audio_file.frame_rate
# audio_buffer = np.array(audio_file.get_array_of_samples())
# audio_fp32 = to_float32(audio_buffer)
# audio_16k = resample(audio_fp32, sr)
# input_signal = torch.tensor(audio_16k).unsqueeze(0)
# length = torch.tensor(len(audio_16k)).unsqueeze(0)
# processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length)
# logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0]
# blank_id = tokenizer.vocab_size()
# decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id]
# text = tokenizer.decode_ids(decoded_prediction)
# return text
# def model(text, web_search):
# if web_search is True:
# """Performs a web search, feeds the results to a language model, and returns the answer."""
# web_results = search(text)
# web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
# formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]"
# stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
# return "".join([response.token.text for response in stream if response.token.text != ""])
# else:
# formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
# stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False)
# return "".join([response.token.text for response in stream if response.token.text != ""])
# async def respond(audio, web_search):
# user = transcribe(audio)
# reply = model(user, web_search)
# communicate = edge_tts.Communicate(reply)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
# tmp_path = tmp_file.name
# await communicate.save(tmp_path)
# return tmp_path
# with gr.Blocks(theme=theme) as demo:
# with gr.Row():
# web_search = gr.Checkbox(label="Web Search", value=False)
# input = gr.Audio(label="User Input", sources="microphone", type="filepath")
# output = gr.Audio(label="AI", autoplay=True)
# gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True)
# if __name__ == "__main__":
# demo.queue(max_size=200).launch()