import gradio as gr import edge_tts import tempfile import numpy as np import soxr from pydub import AudioSegment import torch import sentencepiece as spm import onnxruntime as ort from huggingface_hub import hf_hub_download, InferenceClient theme = gr.themes.Soft( primary_hue="blue", secondary_hue="orange") # Speech Recognition Model Configuration model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25" sample_rate = 16000 # Download preprocessor, encoder and tokenizer preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx")) encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx")) tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx")) # Mistral Model Configuration client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_instructions1 = "[SYSTEM] Answer as OpenGPT 4o, Made by 'Mazen', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide Funny responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" def resample(audio_fp32, sr): return soxr.resample(audio_fp32, sr, sample_rate) def to_float32(audio_buffer): return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) async def transcribe(audio_path): audio_file = AudioSegment.from_file(audio_path) sr = audio_file.frame_rate audio_buffer = np.array(audio_file.get_array_of_samples()) audio_fp32 = to_float32(audio_buffer) audio_16k = resample(audio_fp32, sr) input_signal = torch.tensor(audio_16k).unsqueeze(0) length = torch.tensor(len(audio_16k)).unsqueeze(0) processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length) logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0] blank_id = tokenizer.vocab_size() decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id] text = tokenizer.decode_ids(decoded_prediction) return text async def model(text): formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False) return "".join([response.token.text for response in stream if response.token.text != ""]) async def respond(audio): user = await transcribe(audio) reply = await model(user) communicate = edge_tts.Communicate(reply, voice="en-US-JennyNeural") # Example voice ##communicate = edge_tts.Communicate(reply) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path with gr.Blocks(theme=theme) as demo: input = gr.Audio(label="User Input", sources="microphone", type="filepath") output = gr.Audio(label="AI", autoplay=True) gr.Interface(fn=respond, inputs=[input], outputs=[output], live=True) if __name__ == "__main__": demo.queue(max_size=200).launch() # import gradio as gr # import edge_tts # import asyncio # import tempfile # import numpy as np # import soxr # from pydub import AudioSegment # import torch # import sentencepiece as spm # import onnxruntime as ort # from huggingface_hub import hf_hub_download, InferenceClient # import requests # from bs4 import BeautifulSoup # import urllib # import random # theme = gr.themes.Soft( # primary_hue="blue", # secondary_hue="orange") # # List of user agents to choose from for requests # _useragent_list = [ # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0', # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', # 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36', # 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62', # 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0' # ] # def get_useragent(): # """Returns a random user agent from the list.""" # return random.choice(_useragent_list) # def extract_text_from_webpage(html_content): # """Extracts visible text from HTML content using BeautifulSoup.""" # soup = BeautifulSoup(html_content, "html.parser") # # Remove unwanted tags # for tag in soup(["script", "style", "header", "footer", "nav"]): # tag.extract() # # Get the remaining visible text # visible_text = soup.get_text(strip=True) # return visible_text # def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None): # """Performs a Google search and returns the results.""" # escaped_term = urllib.parse.quote_plus(term) # start = 0 # all_results = [] # # Fetch results in batches # while start < num_results: # resp = requests.get( # url="https://www.google.com/search", # headers={"User-Agent": get_useragent()}, # Set random user agent # params={ # "q": term, # "num": num_results - start, # Number of results to fetch in this batch # "hl": lang, # "start": start, # "safe": safe, # }, # timeout=timeout, # verify=ssl_verify, # ) # resp.raise_for_status() # Raise an exception if request fails # soup = BeautifulSoup(resp.text, "html.parser") # result_block = soup.find_all("div", attrs={"class": "g"}) # # If no results, continue to the next batch # if not result_block: # start += 1 # continue # # Extract link and text from each result # for result in result_block: # link = result.find("a", href=True) # if link: # link = link["href"] # try: # # Fetch webpage content # webpage = requests.get(link, headers={"User-Agent": get_useragent()}) # webpage.raise_for_status() # # Extract visible text from webpage # visible_text = extract_text_from_webpage(webpage.text) # all_results.append({"link": link, "text": visible_text}) # except requests.exceptions.RequestException as e: # # Handle errors fetching or processing webpage # print(f"Error fetching or processing {link}: {e}") # all_results.append({"link": link, "text": None}) # else: # all_results.append({"link": None, "text": None}) # start += len(result_block) # Update starting index for next batch # return all_results # # Speech Recognition Model Configuration # model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25" # sample_rate = 16000 # # Download preprocessor, encoder and tokenizer # preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx")) # encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx")) # tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx")) # # Mistral Model Configuration # client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") # system_instructions1 = "[SYSTEM] Answer as OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" # def resample(audio_fp32, sr): # return soxr.resample(audio_fp32, sr, sample_rate) # def to_float32(audio_buffer): # return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) # def transcribe(audio_path): # audio_file = AudioSegment.from_file(audio_path) # sr = audio_file.frame_rate # audio_buffer = np.array(audio_file.get_array_of_samples()) # audio_fp32 = to_float32(audio_buffer) # audio_16k = resample(audio_fp32, sr) # input_signal = torch.tensor(audio_16k).unsqueeze(0) # length = torch.tensor(len(audio_16k)).unsqueeze(0) # processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length) # logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0] # blank_id = tokenizer.vocab_size() # decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id] # text = tokenizer.decode_ids(decoded_prediction) # return text # def model(text, web_search): # if web_search is True: # """Performs a web search, feeds the results to a language model, and returns the answer.""" # web_results = search(text) # web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results]) # formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]" # stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False) # return "".join([response.token.text for response in stream if response.token.text != ""]) # else: # formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" # stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False) # return "".join([response.token.text for response in stream if response.token.text != ""]) # async def respond(audio, web_search): # user = transcribe(audio) # reply = model(user, web_search) # communicate = edge_tts.Communicate(reply) # with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: # tmp_path = tmp_file.name # await communicate.save(tmp_path) # return tmp_path # with gr.Blocks(theme=theme) as demo: # with gr.Row(): # web_search = gr.Checkbox(label="Web Search", value=False) # input = gr.Audio(label="User Input", sources="microphone", type="filepath") # output = gr.Audio(label="AI", autoplay=True) # gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True) # if __name__ == "__main__": # demo.queue(max_size=200).launch()