from fastapi import FastAPI, File, UploadFile, HTTPException from fastapi.responses import JSONResponse from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image import numpy as np import logging from PIL import Image import io # Configure logging logging.basicConfig(level=logging.DEBUG) # Initialize FastAPI app app = FastAPI() # Load your trained model model = load_model('model.h5') class_names = ['Normal', 'bacteria', 'virus'] def preprocess_image(img, target_size): """Resize and preprocess the image for the model.""" if img.mode != "RGB": img = img.convert("RGB") img = img.resize(target_size) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) # Add batch dimension return img_array @app.post("/predict") async def predict(file: UploadFile = File(...)): if not file: raise HTTPException(status_code=400, detail="No file provided") try: # Read the file's content into a BytesIO object img_bytes = io.BytesIO(await file.read()) # Use PIL to open the image img = Image.open(img_bytes) img_array = preprocess_image(img, (224, 224)) # Make prediction predictions = model.predict(img_array) predicted_class = np.argmax(predictions, axis=1) # Return the prediction predictions = { 'class': class_names[predicted_class[0]], 'confidence': float(predictions[0][predicted_class[0]]) } return JSONResponse(content=predictions) except Exception as e: logging.debug(f"Error processing the file: {str(e)}") raise HTTPException(status_code=500, detail=f"Error processing the file: {str(e)}") if __name__ == '__main__': app.run()