Update app.py
Browse files
app.py
CHANGED
@@ -4,54 +4,63 @@ from pptx import Presentation
|
|
4 |
import re
|
5 |
import json
|
6 |
|
7 |
-
#
|
8 |
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification", tokenizer="Ahmed235/roberta_classification")
|
9 |
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def extract_text_from_pptx(file_path):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
for
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
def limit_text_length(text, max_length=512):
|
21 |
-
# Truncate or limit the text length
|
22 |
return text[:max_length]
|
23 |
|
|
|
24 |
def predict_pptx_content(file_path):
|
25 |
try:
|
|
|
26 |
extracted_text = extract_text_from_pptx(file_path)
|
27 |
cleaned_text = re.sub(r'\s+', ' ', extracted_text)
|
28 |
-
|
29 |
-
|
30 |
limited_text = limit_text_length(cleaned_text)
|
31 |
-
|
32 |
-
|
33 |
result = classifier(limited_text)
|
34 |
-
|
35 |
predicted_label = result[0]['label']
|
36 |
predicted_probability = result[0]['score']
|
37 |
summary = summarizer(cleaned_text, max_length=1000, min_length=30, do_sample=False)[0]['summary_text']
|
38 |
-
|
39 |
output = {
|
40 |
"predicted_label": predicted_label,
|
41 |
"evaluation": predicted_probability,
|
42 |
"summary": summary
|
43 |
}
|
44 |
-
|
45 |
-
output_dict = json.dumps(output, indent = 3)
|
46 |
-
|
47 |
-
return output_dict
|
48 |
-
|
49 |
except Exception as e:
|
50 |
-
|
51 |
-
print(f"Error in predict_pptx_content: {e}")
|
52 |
return {"error": str(e)}
|
53 |
|
54 |
-
|
55 |
iface = gr.Interface(
|
56 |
fn=predict_pptx_content,
|
57 |
inputs=gr.File(type="filepath", label="Upload PowerPoint (.pptx) file"),
|
|
|
4 |
import re
|
5 |
import json
|
6 |
|
7 |
+
# Load the classification and summarization pipelines
|
8 |
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification", tokenizer="Ahmed235/roberta_classification")
|
9 |
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
10 |
|
11 |
+
# Cache for model weights
|
12 |
+
classification_model_loaded = False
|
13 |
+
summarization_model_loaded = False
|
14 |
+
|
15 |
+
def load_models():
|
16 |
+
global classifier, summarizer, classification_model_loaded, summarization_model_loaded
|
17 |
+
if not classification_model_loaded:
|
18 |
+
classifier = pipeline("text-classification", model="Ahmed235/roberta_classification", tokenizer="Ahmed235/roberta_classification")
|
19 |
+
classification_model_loaded = True
|
20 |
+
if not summarization_model_loaded:
|
21 |
+
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
22 |
+
summarization_model_loaded = True
|
23 |
+
|
24 |
+
# Extract text from PowerPoint
|
25 |
def extract_text_from_pptx(file_path):
|
26 |
+
try:
|
27 |
+
presentation = Presentation(file_path)
|
28 |
+
text = []
|
29 |
+
for slide in presentation.slides:
|
30 |
+
for shape in slide.shapes:
|
31 |
+
if hasattr(shape, "text"):
|
32 |
+
text.append(shape.text)
|
33 |
+
return "\n".join(text)
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error extracting text from PowerPoint: {e}")
|
36 |
+
return ""
|
37 |
|
38 |
+
# Limit text length
|
39 |
def limit_text_length(text, max_length=512):
|
|
|
40 |
return text[:max_length]
|
41 |
|
42 |
+
# Predict content from PowerPoint
|
43 |
def predict_pptx_content(file_path):
|
44 |
try:
|
45 |
+
load_models() # Load models if not loaded already
|
46 |
extracted_text = extract_text_from_pptx(file_path)
|
47 |
cleaned_text = re.sub(r'\s+', ' ', extracted_text)
|
|
|
|
|
48 |
limited_text = limit_text_length(cleaned_text)
|
|
|
|
|
49 |
result = classifier(limited_text)
|
|
|
50 |
predicted_label = result[0]['label']
|
51 |
predicted_probability = result[0]['score']
|
52 |
summary = summarizer(cleaned_text, max_length=1000, min_length=30, do_sample=False)[0]['summary_text']
|
|
|
53 |
output = {
|
54 |
"predicted_label": predicted_label,
|
55 |
"evaluation": predicted_probability,
|
56 |
"summary": summary
|
57 |
}
|
58 |
+
return json.dumps(output, indent=3)
|
|
|
|
|
|
|
|
|
59 |
except Exception as e:
|
60 |
+
print(f"Error predicting content from PowerPoint: {e}")
|
|
|
61 |
return {"error": str(e)}
|
62 |
|
63 |
+
# Gradio interface
|
64 |
iface = gr.Interface(
|
65 |
fn=predict_pptx_content,
|
66 |
inputs=gr.File(type="filepath", label="Upload PowerPoint (.pptx) file"),
|