#!/bin/bash GPUS_PER_NODE=8 NNODES=1 NODE_RANK=0 MASTER_ADDR=localhost MASTER_PORT=6001 MODEL="openbmb/MiniCPM-Llama3-V-2_5" # or openbmb/MiniCPM-V-2 # ATTENTION: specify the path to your training data, which should be a json file consisting of a list of conversations. # See the section for finetuning in README for more information. DATA="path/to/trainging_data" EVAL_DATA="path/to/test_data" LLM_TYPE="llama3" # if use openbmb/MiniCPM-V-2, please set LLM_TYPE=minicpm DISTRIBUTED_ARGS=" --nproc_per_node $GPUS_PER_NODE \ --nnodes $NNODES \ --node_rank $NODE_RANK \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT " torchrun $DISTRIBUTED_ARGS finetune.py \ --model_name_or_path $MODEL \ --llm_type $LLM_TYPE \ --data_path $DATA \ --eval_data_path $EVAL_DATA \ --remove_unused_columns false \ --label_names "labels" \ --prediction_loss_only false \ --bf16 true \ --bf16_full_eval true \ --do_train \ --do_eval \ --tune_vision true \ --tune_llm false \ --use_lora true \ --lora_target_modules "llm\..*layers\.\d+\.self_attn\.(q_proj|k_proj)" \ --model_max_length 2048 \ --max_steps 10000 \ --eval_steps 1000 \ --output_dir output/output_minicpmv2_lora \ --logging_dir output/output_minicpmv2_lora \ --logging_strategy "steps" \ --per_device_train_batch_size 2 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 1 \ --evaluation_strategy "steps" \ --save_strategy "steps" \ --save_steps 1000 \ --save_total_limit 10 \ --learning_rate 1e-6 \ --weight_decay 0.1 \ --adam_beta2 0.95 \ --warmup_ratio 0.01 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --gradient_checkpointing true \ --deepspeed ds_config_zero2.json \ --report_to "tensorboard" # wandb