Upload folder using huggingface_hub
Browse files- demo.py +8 -3
- sample_videos/temp.mp4 +0 -0
- temp.py +309 -0
demo.py
CHANGED
@@ -232,6 +232,13 @@ with gr.Blocks() as demo:
|
|
232 |
generate_button = gr.Button(value="Generate", variant='primary')
|
233 |
|
234 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
with gr.Column():
|
236 |
with gr.Row():
|
237 |
input_image_path = gr.Textbox(label="Input Image URL", lines=1, scale=10, info="Press Enter or the Preview button to confirm the input image.")
|
@@ -299,6 +306,4 @@ with gr.Blocks() as demo:
|
|
299 |
outputs=[result_video]
|
300 |
)
|
301 |
|
302 |
-
demo.launch(debug=False, share=True)
|
303 |
-
|
304 |
-
# demo.launch(server_name="0.0.0.0", server_port=10034, enable_queue=True)
|
|
|
232 |
generate_button = gr.Button(value="Generate", variant='primary')
|
233 |
|
234 |
with gr.Accordion("Advanced options", open=False):
|
235 |
+
gr.Markdown(
|
236 |
+
"""
|
237 |
+
- Input image can be specified using the "Input Image URL" text box or uploaded by clicking or dragging the image to the "Input Image" box.
|
238 |
+
- Input image will be resized and/or center cropped to a given resolution (320 x 512) automatically.
|
239 |
+
- After setting the input image path, press the "Preview" button to visualize the resized input image.
|
240 |
+
"""
|
241 |
+
)
|
242 |
with gr.Column():
|
243 |
with gr.Row():
|
244 |
input_image_path = gr.Textbox(label="Input Image URL", lines=1, scale=10, info="Press Enter or the Preview button to confirm the input image.")
|
|
|
306 |
outputs=[result_video]
|
307 |
)
|
308 |
|
309 |
+
demo.launch(debug=False, share=True)
|
|
|
|
sample_videos/temp.mp4
CHANGED
Binary files a/sample_videos/temp.mp4 and b/sample_videos/temp.mp4 differ
|
|
temp.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import argparse
|
5 |
+
import torchvision
|
6 |
+
|
7 |
+
|
8 |
+
from pipelines.pipeline_videogen import VideoGenPipeline
|
9 |
+
from diffusers.schedulers import DDIMScheduler
|
10 |
+
from diffusers.models import AutoencoderKL
|
11 |
+
from diffusers.models import AutoencoderKLTemporalDecoder
|
12 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
|
15 |
+
import os, sys
|
16 |
+
sys.path.append(os.path.split(sys.path[0])[0])
|
17 |
+
from models import get_models
|
18 |
+
import imageio
|
19 |
+
from PIL import Image
|
20 |
+
import numpy as np
|
21 |
+
from datasets import video_transforms
|
22 |
+
from torchvision import transforms
|
23 |
+
from einops import rearrange, repeat
|
24 |
+
from utils import dct_low_pass_filter, exchanged_mixed_dct_freq
|
25 |
+
from copy import deepcopy
|
26 |
+
import spaces
|
27 |
+
import requests
|
28 |
+
from datetime import datetime
|
29 |
+
import random
|
30 |
+
|
31 |
+
parser = argparse.ArgumentParser()
|
32 |
+
parser.add_argument("--config", type=str, default="./configs/sample.yaml")
|
33 |
+
args = parser.parse_args()
|
34 |
+
args = OmegaConf.load(args.config)
|
35 |
+
|
36 |
+
torch.set_grad_enabled(False)
|
37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
dtype = torch.float16 # torch.float16
|
39 |
+
|
40 |
+
unet = get_models(args).to(device, dtype=dtype)
|
41 |
+
|
42 |
+
if args.enable_vae_temporal_decoder:
|
43 |
+
if args.use_dct:
|
44 |
+
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float64).to(device)
|
45 |
+
else:
|
46 |
+
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device)
|
47 |
+
vae = deepcopy(vae_for_base_content).to(dtype=dtype)
|
48 |
+
else:
|
49 |
+
vae_for_base_content = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae",).to(device, dtype=torch.float64)
|
50 |
+
vae = deepcopy(vae_for_base_content).to(dtype=dtype)
|
51 |
+
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
|
52 |
+
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=dtype).to(device) # huge
|
53 |
+
|
54 |
+
# set eval mode
|
55 |
+
unet.eval()
|
56 |
+
vae.eval()
|
57 |
+
text_encoder.eval()
|
58 |
+
|
59 |
+
basedir = os.getcwd()
|
60 |
+
savedir = os.path.join(basedir, "samples/Gradio", datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
|
61 |
+
savedir_sample = os.path.join(savedir, "sample")
|
62 |
+
os.makedirs(savedir, exist_ok=True)
|
63 |
+
|
64 |
+
def update_and_resize_image(input_image_path, height_slider, width_slider):
|
65 |
+
if input_image_path.startswith("http://") or input_image_path.startswith("https://"):
|
66 |
+
pil_image = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB')
|
67 |
+
else:
|
68 |
+
pil_image = Image.open(input_image_path).convert('RGB')
|
69 |
+
|
70 |
+
original_width, original_height = pil_image.size
|
71 |
+
|
72 |
+
if original_height == height_slider and original_width == width_slider:
|
73 |
+
return gr.Image(value=np.array(pil_image))
|
74 |
+
|
75 |
+
ratio1 = height_slider / original_height
|
76 |
+
ratio2 = width_slider / original_width
|
77 |
+
|
78 |
+
if ratio1 > ratio2:
|
79 |
+
new_width = int(original_width * ratio1)
|
80 |
+
new_height = int(original_height * ratio1)
|
81 |
+
else:
|
82 |
+
new_width = int(original_width * ratio2)
|
83 |
+
new_height = int(original_height * ratio2)
|
84 |
+
|
85 |
+
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
|
86 |
+
|
87 |
+
left = (new_width - width_slider) / 2
|
88 |
+
top = (new_height - height_slider) / 2
|
89 |
+
right = left + width_slider
|
90 |
+
bottom = top + height_slider
|
91 |
+
|
92 |
+
pil_image = pil_image.crop((left, top, right, bottom))
|
93 |
+
|
94 |
+
return gr.Image(value=np.array(pil_image))
|
95 |
+
|
96 |
+
|
97 |
+
def update_textbox_and_save_image(input_image, height_slider, width_slider):
|
98 |
+
pil_image = Image.fromarray(input_image.astype(np.uint8)).convert("RGB")
|
99 |
+
|
100 |
+
original_width, original_height = pil_image.size
|
101 |
+
|
102 |
+
ratio1 = height_slider / original_height
|
103 |
+
ratio2 = width_slider / original_width
|
104 |
+
|
105 |
+
if ratio1 > ratio2:
|
106 |
+
new_width = int(original_width * ratio1)
|
107 |
+
new_height = int(original_height * ratio1)
|
108 |
+
else:
|
109 |
+
new_width = int(original_width * ratio2)
|
110 |
+
new_height = int(original_height * ratio2)
|
111 |
+
|
112 |
+
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
|
113 |
+
|
114 |
+
left = (new_width - width_slider) / 2
|
115 |
+
top = (new_height - height_slider) / 2
|
116 |
+
right = left + width_slider
|
117 |
+
bottom = top + height_slider
|
118 |
+
|
119 |
+
pil_image = pil_image.crop((left, top, right, bottom))
|
120 |
+
|
121 |
+
img_path = os.path.join(savedir, "input_image.png")
|
122 |
+
pil_image.save(img_path)
|
123 |
+
|
124 |
+
return gr.Textbox(value=img_path), gr.Image(value=np.array(pil_image))
|
125 |
+
|
126 |
+
def prepare_image(image, vae, transform_video, device, dtype=torch.float16):
|
127 |
+
image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0).permute(0, 3, 1, 2)
|
128 |
+
image = transform_video(image)
|
129 |
+
image = vae.encode(image.to(dtype=dtype, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor)
|
130 |
+
image = image.unsqueeze(2)
|
131 |
+
return image
|
132 |
+
|
133 |
+
|
134 |
+
@spaces.GPU
|
135 |
+
def gen_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed):
|
136 |
+
|
137 |
+
torch.manual_seed(seed)
|
138 |
+
|
139 |
+
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path,
|
140 |
+
subfolder="scheduler",
|
141 |
+
beta_start=args.beta_start,
|
142 |
+
beta_end=args.beta_end,
|
143 |
+
beta_schedule=args.beta_schedule)
|
144 |
+
|
145 |
+
videogen_pipeline = VideoGenPipeline(vae=vae,
|
146 |
+
text_encoder=text_encoder,
|
147 |
+
tokenizer=tokenizer,
|
148 |
+
scheduler=scheduler,
|
149 |
+
unet=unet).to(device)
|
150 |
+
# videogen_pipeline.enable_xformers_memory_efficient_attention()
|
151 |
+
|
152 |
+
transform_video = transforms.Compose([
|
153 |
+
video_transforms.ToTensorVideo(),
|
154 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
155 |
+
])
|
156 |
+
|
157 |
+
if args.use_dct:
|
158 |
+
base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float64).to(device)
|
159 |
+
else:
|
160 |
+
base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float16).to(device)
|
161 |
+
|
162 |
+
if use_dctinit:
|
163 |
+
# filter params
|
164 |
+
print("Using DCT!")
|
165 |
+
base_content_repeat = repeat(base_content, 'b c f h w -> b c (f r) h w', r=15).contiguous()
|
166 |
+
|
167 |
+
# define filter
|
168 |
+
freq_filter = dct_low_pass_filter(dct_coefficients=base_content, percentage=dct_coefficients)
|
169 |
+
|
170 |
+
noise = torch.randn(1, 4, 15, 40, 64).to(device)
|
171 |
+
|
172 |
+
# add noise to base_content
|
173 |
+
diffuse_timesteps = torch.full((1,),int(noise_level))
|
174 |
+
diffuse_timesteps = diffuse_timesteps.long()
|
175 |
+
|
176 |
+
# 3d content
|
177 |
+
base_content_noise = scheduler.add_noise(
|
178 |
+
original_samples=base_content_repeat.to(device),
|
179 |
+
noise=noise,
|
180 |
+
timesteps=diffuse_timesteps.to(device))
|
181 |
+
|
182 |
+
# 3d content
|
183 |
+
latents = exchanged_mixed_dct_freq(noise=noise,
|
184 |
+
base_content=base_content_noise,
|
185 |
+
LPF_3d=freq_filter).to(dtype=torch.float16)
|
186 |
+
|
187 |
+
base_content = base_content.to(dtype=torch.float16)
|
188 |
+
|
189 |
+
videos = videogen_pipeline(prompt,
|
190 |
+
negative_prompt=negative_prompt,
|
191 |
+
latents=latents if use_dctinit else None,
|
192 |
+
base_content=base_content,
|
193 |
+
video_length=15,
|
194 |
+
height=height,
|
195 |
+
width=width,
|
196 |
+
num_inference_steps=diffusion_step,
|
197 |
+
guidance_scale=scfg_scale,
|
198 |
+
motion_bucket_id=100-motion_bucket_id,
|
199 |
+
enable_vae_temporal_decoder=args.enable_vae_temporal_decoder).video
|
200 |
+
|
201 |
+
save_path = args.save_img_path + 'temp' + '.mp4'
|
202 |
+
# torchvision.io.write_video(save_path, videos[0], fps=8, video_codec='h264', options={'crf': '10'})
|
203 |
+
imageio.mimwrite(save_path, videos[0], fps=8, quality=7)
|
204 |
+
return save_path
|
205 |
+
|
206 |
+
|
207 |
+
if not os.path.exists(args.save_img_path):
|
208 |
+
os.makedirs(args.save_img_path)
|
209 |
+
|
210 |
+
|
211 |
+
with gr.Blocks() as demo:
|
212 |
+
|
213 |
+
gr.Markdown("<font color=red size=6.5><center>Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models</center></font>")
|
214 |
+
gr.Markdown(
|
215 |
+
"""<div style="display: flex;align-items: center;justify-content: center">
|
216 |
+
[<a href="https://arxiv.org/abs/2407.15642">Arxiv Report</a>] | [<a href="https://https://maxin-cn.github.io/cinemo_project/">Project Page</a>] | [<a href="https://github.com/maxin-cn/Cinemo">Github</a>]</div>
|
217 |
+
"""
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
with gr.Column(variant="panel"):
|
222 |
+
with gr.Row():
|
223 |
+
prompt_textbox = gr.Textbox(label="Prompt", lines=1)
|
224 |
+
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=1)
|
225 |
+
|
226 |
+
with gr.Row(equal_height=False):
|
227 |
+
with gr.Column():
|
228 |
+
with gr.Row():
|
229 |
+
input_image = gr.Image(label="Input Image", interactive=True)
|
230 |
+
result_video = gr.Video(label="Generated Animation", interactive=False, autoplay=True)
|
231 |
+
|
232 |
+
generate_button = gr.Button(value="Generate", variant='primary')
|
233 |
+
|
234 |
+
with gr.Accordion("Advanced options", open=False):
|
235 |
+
gr.Markdown(
|
236 |
+
"""
|
237 |
+
- Input image can be specified using the "Input Image URL" text box or uploaded by clicking or dragging the image to the "Input Image" box.
|
238 |
+
- Input image will be resized and/or center cropped to a given resolution (320 x 512) automatically.
|
239 |
+
- After setting the input image path, press the "Preview" button to visualize the resized input image.
|
240 |
+
"""
|
241 |
+
)
|
242 |
+
with gr.Column():
|
243 |
+
with gr.Row():
|
244 |
+
input_image_path = gr.Textbox(label="Input Image URL", lines=1, scale=10, info="Press Enter or the Preview button to confirm the input image.")
|
245 |
+
preview_button = gr.Button(value="Preview")
|
246 |
+
|
247 |
+
with gr.Row():
|
248 |
+
sample_step_slider = gr.Slider(label="Sampling steps", value=50, minimum=10, maximum=250, step=1)
|
249 |
+
|
250 |
+
with gr.Row():
|
251 |
+
seed_textbox = gr.Slider(label="Seed", value=100, minimum=1, maximum=int(1e8), step=1, interactive=True)
|
252 |
+
# seed_textbox = gr.Textbox(label="Seed", value=100)
|
253 |
+
# seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
|
254 |
+
# seed_button.click(fn=lambda: gr.Textbox(value=random.randint(1, int(1e8))), inputs=[], outputs=[seed_textbox])
|
255 |
+
|
256 |
+
with gr.Row():
|
257 |
+
height = gr.Slider(label="Height", value=320, minimum=0, maximum=512, step=16, interactive=False)
|
258 |
+
width = gr.Slider(label="Width", value=512, minimum=0, maximum=512, step=16, interactive=False)
|
259 |
+
with gr.Row():
|
260 |
+
txt_cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1.0, maximum=20.0, step=0.1, interactive=True)
|
261 |
+
motion_bucket_id = gr.Slider(label="Motion Intensity", value=10, minimum=1, maximum=20, step=1, interactive=True)
|
262 |
+
|
263 |
+
with gr.Row():
|
264 |
+
use_dctinit = gr.Checkbox(label="Enable DCTInit", value=True)
|
265 |
+
dct_coefficients = gr.Slider(label="DCT Coefficients", value=0.23, minimum=0, maximum=1, step=0.01, interactive=True)
|
266 |
+
noise_level = gr.Slider(label="Noise Level", value=985, minimum=1, maximum=999, step=1, interactive=True)
|
267 |
+
|
268 |
+
input_image.upload(fn=update_textbox_and_save_image, inputs=[input_image, height, width], outputs=[input_image_path, input_image])
|
269 |
+
preview_button.click(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])
|
270 |
+
input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])
|
271 |
+
|
272 |
+
EXAMPLES = [
|
273 |
+
["./example/aircrafts_flying/0.jpg", "aircrafts flying" , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
|
274 |
+
["./example/fireworks/0.jpg", "fireworks" , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
|
275 |
+
["./example/flowers_swaying/0.jpg", "flowers swaying" , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
|
276 |
+
["./example/girl_walking_on_the_beach/0.jpg", "girl walking on the beach" , 50, 320, 512, 7.5, True, 0.23, 985, 10, 200],
|
277 |
+
["./example/house_rotating/0.jpg", "house rotating" , 50, 320, 512, 7.5, True, 0.23, 985, 10, 100],
|
278 |
+
["./example/people_runing/0.jpg", "people runing" , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
|
279 |
+
]
|
280 |
+
|
281 |
+
examples = gr.Examples(
|
282 |
+
examples = EXAMPLES,
|
283 |
+
fn = gen_video,
|
284 |
+
inputs=[input_image, prompt_textbox, sample_step_slider, height, width, txt_cfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed_textbox],
|
285 |
+
outputs=[result_video],
|
286 |
+
# cache_examples=True,
|
287 |
+
cache_examples="lazy",
|
288 |
+
)
|
289 |
+
|
290 |
+
generate_button.click(
|
291 |
+
fn=gen_video,
|
292 |
+
inputs=[
|
293 |
+
input_image,
|
294 |
+
prompt_textbox,
|
295 |
+
negative_prompt_textbox,
|
296 |
+
sample_step_slider,
|
297 |
+
height,
|
298 |
+
width,
|
299 |
+
txt_cfg_scale,
|
300 |
+
use_dctinit,
|
301 |
+
dct_coefficients,
|
302 |
+
noise_level,
|
303 |
+
motion_bucket_id,
|
304 |
+
seed_textbox,
|
305 |
+
],
|
306 |
+
outputs=[result_video]
|
307 |
+
)
|
308 |
+
|
309 |
+
demo.launch(debug=False, share=True)
|